Cleanup: Move curve to mesh node implementation to blenkernel

I plan to use this for curve object data conversion to mesh in D12533,
and possibly for the implicit curve to mesh conversion in the curve
and text object modifier stack in the future.

Differential Revision: https://developer.blender.org/D12585
This commit is contained in:
Hans Goudey 2021-09-21 11:56:54 -05:00
parent fde9c3bc74
commit 3642e17428
4 changed files with 782 additions and 700 deletions

View File

@ -0,0 +1,31 @@
/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#pragma once
struct Mesh;
struct CurveEval;
/** \file
* \ingroup geo
*/
namespace blender::bke {
Mesh *curve_to_mesh_sweep(const CurveEval &curve, const CurveEval &profile);
Mesh *curve_to_wire_mesh(const CurveEval &curve);
} // namespace blender::bke

View File

@ -116,6 +116,7 @@ set(SRC
intern/curve_decimate.c
intern/curve_deform.c
intern/curve_eval.cc
intern/curve_to_mesh_convert.cc
intern/curveprofile.c
intern/customdata.c
intern/customdata_file.c
@ -332,6 +333,7 @@ set(SRC
BKE_cryptomatte.h
BKE_cryptomatte.hh
BKE_curve.h
BKE_curve_to_mesh.hh
BKE_curveprofile.h
BKE_customdata.h
BKE_customdata_file.h

View File

@ -0,0 +1,739 @@
/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "BLI_array.hh"
#include "BLI_set.hh"
#include "BLI_task.hh"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "BKE_attribute_access.hh"
#include "BKE_attribute_math.hh"
#include "BKE_geometry_set.hh"
#include "BKE_material.h"
#include "BKE_mesh.h"
#include "BKE_spline.hh"
#include "BKE_curve_to_mesh.hh"
using blender::fn::GMutableSpan;
using blender::fn::GSpan;
using blender::fn::GVArray_Typed;
using blender::fn::GVArrayPtr;
namespace blender::bke {
/** Information about the creation of one curve spline and profile spline combination. */
struct ResultInfo {
const Spline &spline;
const Spline &profile;
int vert_offset;
int edge_offset;
int loop_offset;
int poly_offset;
int spline_vert_len;
int spline_edge_len;
int profile_vert_len;
int profile_edge_len;
};
static void vert_extrude_to_mesh_data(const Spline &spline,
const float3 profile_vert,
MutableSpan<MVert> r_verts,
MutableSpan<MEdge> r_edges,
const int vert_offset,
const int edge_offset)
{
Span<float3> positions = spline.evaluated_positions();
for (const int i : IndexRange(positions.size() - 1)) {
MEdge &edge = r_edges[edge_offset + i];
edge.v1 = vert_offset + i;
edge.v2 = vert_offset + i + 1;
edge.flag = ME_LOOSEEDGE;
}
if (spline.is_cyclic() && spline.evaluated_edges_size() > 1) {
MEdge &edge = r_edges[edge_offset + spline.evaluated_edges_size() - 1];
edge.v1 = vert_offset;
edge.v2 = vert_offset + positions.size() - 1;
edge.flag = ME_LOOSEEDGE;
}
for (const int i : positions.index_range()) {
MVert &vert = r_verts[vert_offset + i];
copy_v3_v3(vert.co, positions[i] + profile_vert);
}
}
static void mark_edges_sharp(MutableSpan<MEdge> edges)
{
for (MEdge &edge : edges) {
edge.flag |= ME_SHARP;
}
}
static void spline_extrude_to_mesh_data(const ResultInfo &info,
MutableSpan<MVert> r_verts,
MutableSpan<MEdge> r_edges,
MutableSpan<MLoop> r_loops,
MutableSpan<MPoly> r_polys)
{
const Spline &spline = info.spline;
const Spline &profile = info.profile;
if (info.profile_vert_len == 1) {
vert_extrude_to_mesh_data(spline,
profile.evaluated_positions()[0],
r_verts,
r_edges,
info.vert_offset,
info.edge_offset);
return;
}
/* Add the edges running along the length of the curve, starting at each profile vertex. */
const int spline_edges_start = info.edge_offset;
for (const int i_profile : IndexRange(info.profile_vert_len)) {
const int profile_edge_offset = spline_edges_start + i_profile * info.spline_edge_len;
for (const int i_ring : IndexRange(info.spline_edge_len)) {
const int i_next_ring = (i_ring == info.spline_vert_len - 1) ? 0 : i_ring + 1;
const int ring_vert_offset = info.vert_offset + info.profile_vert_len * i_ring;
const int next_ring_vert_offset = info.vert_offset + info.profile_vert_len * i_next_ring;
MEdge &edge = r_edges[profile_edge_offset + i_ring];
edge.v1 = ring_vert_offset + i_profile;
edge.v2 = next_ring_vert_offset + i_profile;
edge.flag = ME_EDGEDRAW | ME_EDGERENDER;
}
}
/* Add the edges running along each profile ring. */
const int profile_edges_start = spline_edges_start +
info.profile_vert_len * info.spline_edge_len;
for (const int i_ring : IndexRange(info.spline_vert_len)) {
const int ring_vert_offset = info.vert_offset + info.profile_vert_len * i_ring;
const int ring_edge_offset = profile_edges_start + i_ring * info.profile_edge_len;
for (const int i_profile : IndexRange(info.profile_edge_len)) {
const int i_next_profile = (i_profile == info.profile_vert_len - 1) ? 0 : i_profile + 1;
MEdge &edge = r_edges[ring_edge_offset + i_profile];
edge.v1 = ring_vert_offset + i_profile;
edge.v2 = ring_vert_offset + i_next_profile;
edge.flag = ME_EDGEDRAW | ME_EDGERENDER;
}
}
/* Calculate poly and corner indices. */
for (const int i_ring : IndexRange(info.spline_edge_len)) {
const int i_next_ring = (i_ring == info.spline_vert_len - 1) ? 0 : i_ring + 1;
const int ring_vert_offset = info.vert_offset + info.profile_vert_len * i_ring;
const int next_ring_vert_offset = info.vert_offset + info.profile_vert_len * i_next_ring;
const int ring_edge_start = profile_edges_start + info.profile_edge_len * i_ring;
const int next_ring_edge_offset = profile_edges_start + info.profile_edge_len * i_next_ring;
const int ring_poly_offset = info.poly_offset + i_ring * info.profile_edge_len;
const int ring_loop_offset = info.loop_offset + i_ring * info.profile_edge_len * 4;
for (const int i_profile : IndexRange(info.profile_edge_len)) {
const int ring_segment_loop_offset = ring_loop_offset + i_profile * 4;
const int i_next_profile = (i_profile == info.profile_vert_len - 1) ? 0 : i_profile + 1;
const int spline_edge_start = spline_edges_start + info.spline_edge_len * i_profile;
const int next_spline_edge_start = spline_edges_start +
info.spline_edge_len * i_next_profile;
MPoly &poly = r_polys[ring_poly_offset + i_profile];
poly.loopstart = ring_segment_loop_offset;
poly.totloop = 4;
poly.flag = ME_SMOOTH;
MLoop &loop_a = r_loops[ring_segment_loop_offset];
loop_a.v = ring_vert_offset + i_profile;
loop_a.e = ring_edge_start + i_profile;
MLoop &loop_b = r_loops[ring_segment_loop_offset + 1];
loop_b.v = ring_vert_offset + i_next_profile;
loop_b.e = next_spline_edge_start + i_ring;
MLoop &loop_c = r_loops[ring_segment_loop_offset + 2];
loop_c.v = next_ring_vert_offset + i_next_profile;
loop_c.e = next_ring_edge_offset + i_profile;
MLoop &loop_d = r_loops[ring_segment_loop_offset + 3];
loop_d.v = next_ring_vert_offset + i_profile;
loop_d.e = spline_edge_start + i_ring;
}
}
/* Calculate the positions of each profile ring profile along the spline. */
Span<float3> positions = spline.evaluated_positions();
Span<float3> tangents = spline.evaluated_tangents();
Span<float3> normals = spline.evaluated_normals();
Span<float3> profile_positions = profile.evaluated_positions();
GVArray_Typed<float> radii = spline.interpolate_to_evaluated(spline.radii());
for (const int i_ring : IndexRange(info.spline_vert_len)) {
float4x4 point_matrix = float4x4::from_normalized_axis_data(
positions[i_ring], normals[i_ring], tangents[i_ring]);
point_matrix.apply_scale(radii[i_ring]);
const int ring_vert_start = info.vert_offset + i_ring * info.profile_vert_len;
for (const int i_profile : IndexRange(info.profile_vert_len)) {
MVert &vert = r_verts[ring_vert_start + i_profile];
copy_v3_v3(vert.co, point_matrix * profile_positions[i_profile]);
}
}
/* Mark edge loops from sharp vector control points sharp. */
if (profile.type() == Spline::Type::Bezier) {
const BezierSpline &bezier_spline = static_cast<const BezierSpline &>(profile);
Span<int> control_point_offsets = bezier_spline.control_point_offsets();
for (const int i : IndexRange(bezier_spline.size())) {
if (bezier_spline.point_is_sharp(i)) {
mark_edges_sharp(
r_edges.slice(spline_edges_start + info.spline_edge_len * control_point_offsets[i],
info.spline_edge_len));
}
}
}
}
static inline int spline_extrude_vert_size(const Spline &curve, const Spline &profile)
{
return curve.evaluated_points_size() * profile.evaluated_points_size();
}
static inline int spline_extrude_edge_size(const Spline &curve, const Spline &profile)
{
/* Add the ring edges, with one ring for every curve vertex, and the edge loops
* that run along the length of the curve, starting on the first profile. */
return curve.evaluated_points_size() * profile.evaluated_edges_size() +
curve.evaluated_edges_size() * profile.evaluated_points_size();
}
static inline int spline_extrude_loop_size(const Spline &curve, const Spline &profile)
{
return curve.evaluated_edges_size() * profile.evaluated_edges_size() * 4;
}
static inline int spline_extrude_poly_size(const Spline &curve, const Spline &profile)
{
return curve.evaluated_edges_size() * profile.evaluated_edges_size();
}
struct ResultOffsets {
Array<int> vert;
Array<int> edge;
Array<int> loop;
Array<int> poly;
};
static ResultOffsets calculate_result_offsets(Span<SplinePtr> profiles, Span<SplinePtr> curves)
{
const int total = profiles.size() * curves.size();
Array<int> vert(total + 1);
Array<int> edge(total + 1);
Array<int> loop(total + 1);
Array<int> poly(total + 1);
int mesh_index = 0;
int vert_offset = 0;
int edge_offset = 0;
int loop_offset = 0;
int poly_offset = 0;
for (const int i_spline : curves.index_range()) {
for (const int i_profile : profiles.index_range()) {
vert[mesh_index] = vert_offset;
edge[mesh_index] = edge_offset;
loop[mesh_index] = loop_offset;
poly[mesh_index] = poly_offset;
vert_offset += spline_extrude_vert_size(*curves[i_spline], *profiles[i_profile]);
edge_offset += spline_extrude_edge_size(*curves[i_spline], *profiles[i_profile]);
loop_offset += spline_extrude_loop_size(*curves[i_spline], *profiles[i_profile]);
poly_offset += spline_extrude_poly_size(*curves[i_spline], *profiles[i_profile]);
mesh_index++;
}
}
vert.last() = vert_offset;
edge.last() = edge_offset;
loop.last() = loop_offset;
poly.last() = poly_offset;
return {std::move(vert), std::move(edge), std::move(loop), std::move(poly)};
}
static AttributeDomain get_result_attribute_domain(const MeshComponent &component,
const AttributeIDRef &attribute_id)
{
/* Only use a different domain if it is builtin and must only exist on one domain. */
if (!component.attribute_is_builtin(attribute_id)) {
return ATTR_DOMAIN_POINT;
}
std::optional<AttributeMetaData> meta_data = component.attribute_get_meta_data(attribute_id);
if (!meta_data) {
/* This function has to return something in this case, but it shouldn't be used,
* so return an output that will assert later if the code attempts to handle it. */
return ATTR_DOMAIN_AUTO;
}
return meta_data->domain;
}
/**
* The data stored in the attribute and its domain from #OutputAttribute, to avoid calling
* `as_span()` for every single profile and curve spline combination, and for readability.
*/
struct ResultAttributeData {
GMutableSpan data;
AttributeDomain domain;
};
static std::optional<ResultAttributeData> create_attribute_and_get_span(
MeshComponent &component,
const AttributeIDRef &attribute_id,
AttributeMetaData meta_data,
Vector<OutputAttribute> &r_attributes)
{
const AttributeDomain domain = get_result_attribute_domain(component, attribute_id);
OutputAttribute attribute = component.attribute_try_get_for_output_only(
attribute_id, domain, meta_data.data_type);
if (!attribute) {
return std::nullopt;
}
GMutableSpan span = attribute.as_span();
r_attributes.append(std::move(attribute));
return std::make_optional<ResultAttributeData>({span, domain});
}
/**
* Store the references to the attribute data from the curve and profile inputs. Here we rely on
* the invariants of the storage of curve attributes, that the order will be consistent between
* splines, and all splines will have the same attributes.
*/
struct ResultAttributes {
/**
* Result attributes on the mesh corresponding to each attribute on the curve input, in the same
* order. The data is optional only in case the attribute does not exist on the mesh for some
* reason, like "shade_smooth" when the result has no faces.
*/
Vector<std::optional<ResultAttributeData>> curve_point_attributes;
Vector<std::optional<ResultAttributeData>> curve_spline_attributes;
/**
* Result attributes corresponding the attributes on the profile input, in the same order. The
* attributes are optional in case the attribute names correspond to a names used by the curve
* input, in which case the curve input attributes take precedence.
*/
Vector<std::optional<ResultAttributeData>> profile_point_attributes;
Vector<std::optional<ResultAttributeData>> profile_spline_attributes;
/**
* Because some builtin attributes are not stored contiguously, and the curve inputs might have
* attributes with those names, it's necessary to keep OutputAttributes around to give access to
* the result data in a contiguous array.
*/
Vector<OutputAttribute> attributes;
};
static ResultAttributes create_result_attributes(const CurveEval &curve,
const CurveEval &profile,
Mesh &mesh)
{
MeshComponent mesh_component;
mesh_component.replace(&mesh, GeometryOwnershipType::Editable);
Set<AttributeIDRef> curve_attributes;
/* In order to prefer attributes on the main curve input when there are name collisions, first
* check the attributes on the curve, then add attributes on the profile that are not also on the
* main curve input. */
ResultAttributes result;
curve.splines().first()->attributes.foreach_attribute(
[&](const AttributeIDRef &id, const AttributeMetaData &meta_data) {
curve_attributes.add_new(id);
result.curve_point_attributes.append(
create_attribute_and_get_span(mesh_component, id, meta_data, result.attributes));
return true;
},
ATTR_DOMAIN_POINT);
curve.attributes.foreach_attribute(
[&](const AttributeIDRef &id, const AttributeMetaData &meta_data) {
curve_attributes.add_new(id);
result.curve_spline_attributes.append(
create_attribute_and_get_span(mesh_component, id, meta_data, result.attributes));
return true;
},
ATTR_DOMAIN_CURVE);
profile.splines().first()->attributes.foreach_attribute(
[&](const AttributeIDRef &id, const AttributeMetaData &meta_data) {
if (curve_attributes.contains(id)) {
result.profile_point_attributes.append({});
}
else {
result.profile_point_attributes.append(
create_attribute_and_get_span(mesh_component, id, meta_data, result.attributes));
}
return true;
},
ATTR_DOMAIN_POINT);
profile.attributes.foreach_attribute(
[&](const AttributeIDRef &id, const AttributeMetaData &meta_data) {
if (curve_attributes.contains(id)) {
result.profile_spline_attributes.append({});
}
else {
result.profile_spline_attributes.append(
create_attribute_and_get_span(mesh_component, id, meta_data, result.attributes));
}
return true;
},
ATTR_DOMAIN_CURVE);
return result;
}
template<typename T>
static void copy_curve_point_data_to_mesh_verts(const Span<T> src,
const ResultInfo &info,
MutableSpan<T> dst)
{
for (const int i_ring : IndexRange(info.spline_vert_len)) {
const int ring_vert_start = info.vert_offset + i_ring * info.profile_vert_len;
dst.slice(ring_vert_start, info.profile_vert_len).fill(src[i_ring]);
}
}
template<typename T>
static void copy_curve_point_data_to_mesh_edges(const Span<T> src,
const ResultInfo &info,
MutableSpan<T> dst)
{
const int edges_start = info.edge_offset + info.profile_vert_len * info.spline_edge_len;
for (const int i_ring : IndexRange(info.spline_vert_len)) {
const int ring_edge_start = edges_start + info.profile_edge_len * i_ring;
dst.slice(ring_edge_start, info.profile_edge_len).fill(src[i_ring]);
}
}
template<typename T>
static void copy_curve_point_data_to_mesh_faces(const Span<T> src,
const ResultInfo &info,
MutableSpan<T> dst)
{
for (const int i_ring : IndexRange(info.spline_edge_len)) {
const int ring_face_start = info.poly_offset + info.profile_edge_len * i_ring;
dst.slice(ring_face_start, info.profile_edge_len).fill(src[i_ring]);
}
}
static void copy_curve_point_attribute_to_mesh(const GSpan src,
const ResultInfo &info,
ResultAttributeData &dst)
{
GVArrayPtr interpolated_gvarray = info.spline.interpolate_to_evaluated(src);
GSpan interpolated = interpolated_gvarray->get_internal_span();
attribute_math::convert_to_static_type(src.type(), [&](auto dummy) {
using T = decltype(dummy);
switch (dst.domain) {
case ATTR_DOMAIN_POINT:
copy_curve_point_data_to_mesh_verts(interpolated.typed<T>(), info, dst.data.typed<T>());
break;
case ATTR_DOMAIN_EDGE:
copy_curve_point_data_to_mesh_edges(interpolated.typed<T>(), info, dst.data.typed<T>());
break;
case ATTR_DOMAIN_FACE:
copy_curve_point_data_to_mesh_faces(interpolated.typed<T>(), info, dst.data.typed<T>());
break;
case ATTR_DOMAIN_CORNER:
/* Unsupported for now, since there are no builtin attributes to convert into. */
break;
default:
BLI_assert_unreachable();
break;
}
});
}
template<typename T>
static void copy_profile_point_data_to_mesh_verts(const Span<T> src,
const ResultInfo &info,
MutableSpan<T> dst)
{
for (const int i_ring : IndexRange(info.spline_vert_len)) {
const int profile_vert_start = info.vert_offset + i_ring * info.profile_vert_len;
for (const int i_profile : IndexRange(info.profile_vert_len)) {
dst[profile_vert_start + i_profile] = src[i_profile];
}
}
}
template<typename T>
static void copy_profile_point_data_to_mesh_edges(const Span<T> src,
const ResultInfo &info,
MutableSpan<T> dst)
{
for (const int i_profile : IndexRange(info.profile_vert_len)) {
const int profile_edge_offset = info.edge_offset + i_profile * info.spline_edge_len;
dst.slice(profile_edge_offset, info.spline_edge_len).fill(src[i_profile]);
}
}
template<typename T>
static void copy_profile_point_data_to_mesh_faces(const Span<T> src,
const ResultInfo &info,
MutableSpan<T> dst)
{
for (const int i_ring : IndexRange(info.spline_edge_len)) {
const int profile_face_start = info.poly_offset + i_ring * info.profile_edge_len;
for (const int i_profile : IndexRange(info.profile_edge_len)) {
dst[profile_face_start + i_profile] = src[i_profile];
}
}
}
static void copy_profile_point_attribute_to_mesh(const GSpan src,
const ResultInfo &info,
ResultAttributeData &dst)
{
GVArrayPtr interpolated_gvarray = info.profile.interpolate_to_evaluated(src);
GSpan interpolated = interpolated_gvarray->get_internal_span();
attribute_math::convert_to_static_type(src.type(), [&](auto dummy) {
using T = decltype(dummy);
switch (dst.domain) {
case ATTR_DOMAIN_POINT:
copy_profile_point_data_to_mesh_verts(interpolated.typed<T>(), info, dst.data.typed<T>());
break;
case ATTR_DOMAIN_EDGE:
copy_profile_point_data_to_mesh_edges(interpolated.typed<T>(), info, dst.data.typed<T>());
break;
case ATTR_DOMAIN_FACE:
copy_profile_point_data_to_mesh_faces(interpolated.typed<T>(), info, dst.data.typed<T>());
break;
case ATTR_DOMAIN_CORNER:
/* Unsupported for now, since there are no builtin attributes to convert into. */
break;
default:
BLI_assert_unreachable();
break;
}
});
}
static void copy_point_domain_attributes_to_mesh(const ResultInfo &info,
ResultAttributes &attributes)
{
if (!attributes.curve_point_attributes.is_empty()) {
int i = 0;
info.spline.attributes.foreach_attribute(
[&](const AttributeIDRef &id, const AttributeMetaData &UNUSED(meta_data)) {
if (attributes.curve_point_attributes[i]) {
copy_curve_point_attribute_to_mesh(*info.spline.attributes.get_for_read(id),
info,
*attributes.curve_point_attributes[i]);
}
i++;
return true;
},
ATTR_DOMAIN_POINT);
}
if (!attributes.profile_point_attributes.is_empty()) {
int i = 0;
info.profile.attributes.foreach_attribute(
[&](const AttributeIDRef &id, const AttributeMetaData &UNUSED(meta_data)) {
if (attributes.profile_point_attributes[i]) {
copy_profile_point_attribute_to_mesh(*info.profile.attributes.get_for_read(id),
info,
*attributes.profile_point_attributes[i]);
}
i++;
return true;
},
ATTR_DOMAIN_POINT);
}
}
template<typename T>
static void copy_spline_data_to_mesh(Span<T> src, Span<int> offsets, MutableSpan<T> dst)
{
for (const int i : IndexRange(src.size())) {
dst.slice(offsets[i], offsets[i + 1] - offsets[i]).fill(src[i]);
}
}
/**
* Since the offsets for each combination of curve and profile spline are stored for every mesh
* domain, and this just needs to fill the chunks corresponding to each combination, we can use
* the same function for all mesh domains.
*/
static void copy_spline_attribute_to_mesh(const GSpan src,
const ResultOffsets &offsets,
ResultAttributeData &dst_attribute)
{
attribute_math::convert_to_static_type(src.type(), [&](auto dummy) {
using T = decltype(dummy);
switch (dst_attribute.domain) {
case ATTR_DOMAIN_POINT:
copy_spline_data_to_mesh(src.typed<T>(), offsets.vert, dst_attribute.data.typed<T>());
break;
case ATTR_DOMAIN_EDGE:
copy_spline_data_to_mesh(src.typed<T>(), offsets.edge, dst_attribute.data.typed<T>());
break;
case ATTR_DOMAIN_FACE:
copy_spline_data_to_mesh(src.typed<T>(), offsets.poly, dst_attribute.data.typed<T>());
break;
case ATTR_DOMAIN_CORNER:
copy_spline_data_to_mesh(src.typed<T>(), offsets.loop, dst_attribute.data.typed<T>());
break;
default:
BLI_assert_unreachable();
break;
}
});
}
static void copy_spline_domain_attributes_to_mesh(const CurveEval &curve,
const CurveEval &profile,
const ResultOffsets &offsets,
ResultAttributes &attributes)
{
if (!attributes.curve_spline_attributes.is_empty()) {
int i = 0;
curve.attributes.foreach_attribute(
[&](const AttributeIDRef &id, const AttributeMetaData &UNUSED(meta_data)) {
if (attributes.curve_spline_attributes[i]) {
copy_spline_attribute_to_mesh(*curve.attributes.get_for_read(id),
offsets,
*attributes.curve_spline_attributes[i]);
}
i++;
return true;
},
ATTR_DOMAIN_CURVE);
}
if (!attributes.profile_spline_attributes.is_empty()) {
int i = 0;
profile.attributes.foreach_attribute(
[&](const AttributeIDRef &id, const AttributeMetaData &UNUSED(meta_data)) {
if (attributes.profile_spline_attributes[i]) {
copy_spline_attribute_to_mesh(*profile.attributes.get_for_read(id),
offsets,
*attributes.profile_spline_attributes[i]);
}
i++;
return true;
},
ATTR_DOMAIN_CURVE);
}
}
/**
* Extrude all splines in the profile curve along the path of every spline in the curve input.
* Transfer curve attributes to the mesh.
*
* \note Normal calculation is by far the slowest part of calculations relating to the result mesh.
* Although it would be a sensible decision to use the better topology information available while
* generating the mesh to also generate the normals, that work may wasted if the output mesh is
* changed anyway in a way that affects the normals. So currently this code uses the safer /
* simpler solution of deferring normal calculation to the rest of Blender.
*/
Mesh *curve_to_mesh_sweep(const CurveEval &curve, const CurveEval &profile)
{
Span<SplinePtr> profiles = profile.splines();
Span<SplinePtr> curves = curve.splines();
const ResultOffsets offsets = calculate_result_offsets(profiles, curves);
if (offsets.vert.last() == 0) {
return nullptr;
}
Mesh *mesh = BKE_mesh_new_nomain(
offsets.vert.last(), offsets.edge.last(), 0, offsets.loop.last(), offsets.poly.last());
BKE_id_material_eval_ensure_default_slot(&mesh->id);
mesh->flag |= ME_AUTOSMOOTH;
mesh->smoothresh = DEG2RADF(180.0f);
BKE_mesh_normals_tag_dirty(mesh);
ResultAttributes attributes = create_result_attributes(curve, profile, *mesh);
threading::parallel_for(curves.index_range(), 128, [&](IndexRange curves_range) {
for (const int i_spline : curves_range) {
const Spline &spline = *curves[i_spline];
if (spline.evaluated_points_size() == 0) {
continue;
}
const int spline_start_index = i_spline * profiles.size();
threading::parallel_for(profiles.index_range(), 128, [&](IndexRange profiles_range) {
for (const int i_profile : profiles_range) {
const Spline &profile = *profiles[i_profile];
const int i_mesh = spline_start_index + i_profile;
ResultInfo info{
spline,
profile,
offsets.vert[i_mesh],
offsets.edge[i_mesh],
offsets.loop[i_mesh],
offsets.poly[i_mesh],
spline.evaluated_points_size(),
spline.evaluated_edges_size(),
profile.evaluated_points_size(),
profile.evaluated_edges_size(),
};
spline_extrude_to_mesh_data(info,
{mesh->mvert, mesh->totvert},
{mesh->medge, mesh->totedge},
{mesh->mloop, mesh->totloop},
{mesh->mpoly, mesh->totpoly});
copy_point_domain_attributes_to_mesh(info, attributes);
}
});
}
});
copy_spline_domain_attributes_to_mesh(curve, profile, offsets, attributes);
for (OutputAttribute &output_attribute : attributes.attributes) {
output_attribute.save();
}
return mesh;
}
static CurveEval get_curve_single_vert()
{
CurveEval curve;
std::unique_ptr<PolySpline> spline = std::make_unique<PolySpline>();
spline->add_point(float3(0), 0, 0.0f);
curve.add_spline(std::move(spline));
return curve;
}
/**
* Create a loose-edge mesh based on the evaluated path of the curve's splines.
* Transfer curve attributes to the mesh.
*/
Mesh *curve_to_wire_mesh(const CurveEval &curve)
{
static const CurveEval vert_curve = get_curve_single_vert();
return curve_to_mesh_sweep(curve, vert_curve);
}
} // namespace blender::bke

View File

@ -14,17 +14,10 @@
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "BLI_array.hh"
#include "BLI_float4x4.hh"
#include "BLI_task.hh"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "BKE_material.h"
#include "BKE_mesh.h"
#include "BKE_spline.hh"
#include "BKE_curve_to_mesh.hh"
#include "UI_interface.h"
#include "UI_resources.h"
@ -39,692 +32,6 @@ static void geo_node_curve_to_mesh_declare(NodeDeclarationBuilder &b)
b.add_output<decl::Geometry>("Mesh");
}
/** Information about the creation of one curve spline and profile spline combination. */
struct ResultInfo {
const Spline &spline;
const Spline &profile;
int vert_offset;
int edge_offset;
int loop_offset;
int poly_offset;
int spline_vert_len;
int spline_edge_len;
int profile_vert_len;
int profile_edge_len;
};
static void vert_extrude_to_mesh_data(const Spline &spline,
const float3 profile_vert,
MutableSpan<MVert> r_verts,
MutableSpan<MEdge> r_edges,
const int vert_offset,
const int edge_offset)
{
Span<float3> positions = spline.evaluated_positions();
for (const int i : IndexRange(positions.size() - 1)) {
MEdge &edge = r_edges[edge_offset + i];
edge.v1 = vert_offset + i;
edge.v2 = vert_offset + i + 1;
edge.flag = ME_LOOSEEDGE;
}
if (spline.is_cyclic() && spline.evaluated_edges_size() > 1) {
MEdge &edge = r_edges[edge_offset + spline.evaluated_edges_size() - 1];
edge.v1 = vert_offset;
edge.v2 = vert_offset + positions.size() - 1;
edge.flag = ME_LOOSEEDGE;
}
for (const int i : positions.index_range()) {
MVert &vert = r_verts[vert_offset + i];
copy_v3_v3(vert.co, positions[i] + profile_vert);
}
}
static void mark_edges_sharp(MutableSpan<MEdge> edges)
{
for (MEdge &edge : edges) {
edge.flag |= ME_SHARP;
}
}
static void spline_extrude_to_mesh_data(const ResultInfo &info,
MutableSpan<MVert> r_verts,
MutableSpan<MEdge> r_edges,
MutableSpan<MLoop> r_loops,
MutableSpan<MPoly> r_polys)
{
const Spline &spline = info.spline;
const Spline &profile = info.profile;
if (info.profile_vert_len == 1) {
vert_extrude_to_mesh_data(spline,
profile.evaluated_positions()[0],
r_verts,
r_edges,
info.vert_offset,
info.edge_offset);
return;
}
/* Add the edges running along the length of the curve, starting at each profile vertex. */
const int spline_edges_start = info.edge_offset;
for (const int i_profile : IndexRange(info.profile_vert_len)) {
const int profile_edge_offset = spline_edges_start + i_profile * info.spline_edge_len;
for (const int i_ring : IndexRange(info.spline_edge_len)) {
const int i_next_ring = (i_ring == info.spline_vert_len - 1) ? 0 : i_ring + 1;
const int ring_vert_offset = info.vert_offset + info.profile_vert_len * i_ring;
const int next_ring_vert_offset = info.vert_offset + info.profile_vert_len * i_next_ring;
MEdge &edge = r_edges[profile_edge_offset + i_ring];
edge.v1 = ring_vert_offset + i_profile;
edge.v2 = next_ring_vert_offset + i_profile;
edge.flag = ME_EDGEDRAW | ME_EDGERENDER;
}
}
/* Add the edges running along each profile ring. */
const int profile_edges_start = spline_edges_start +
info.profile_vert_len * info.spline_edge_len;
for (const int i_ring : IndexRange(info.spline_vert_len)) {
const int ring_vert_offset = info.vert_offset + info.profile_vert_len * i_ring;
const int ring_edge_offset = profile_edges_start + i_ring * info.profile_edge_len;
for (const int i_profile : IndexRange(info.profile_edge_len)) {
const int i_next_profile = (i_profile == info.profile_vert_len - 1) ? 0 : i_profile + 1;
MEdge &edge = r_edges[ring_edge_offset + i_profile];
edge.v1 = ring_vert_offset + i_profile;
edge.v2 = ring_vert_offset + i_next_profile;
edge.flag = ME_EDGEDRAW | ME_EDGERENDER;
}
}
/* Calculate poly and corner indices. */
for (const int i_ring : IndexRange(info.spline_edge_len)) {
const int i_next_ring = (i_ring == info.spline_vert_len - 1) ? 0 : i_ring + 1;
const int ring_vert_offset = info.vert_offset + info.profile_vert_len * i_ring;
const int next_ring_vert_offset = info.vert_offset + info.profile_vert_len * i_next_ring;
const int ring_edge_start = profile_edges_start + info.profile_edge_len * i_ring;
const int next_ring_edge_offset = profile_edges_start + info.profile_edge_len * i_next_ring;
const int ring_poly_offset = info.poly_offset + i_ring * info.profile_edge_len;
const int ring_loop_offset = info.loop_offset + i_ring * info.profile_edge_len * 4;
for (const int i_profile : IndexRange(info.profile_edge_len)) {
const int ring_segment_loop_offset = ring_loop_offset + i_profile * 4;
const int i_next_profile = (i_profile == info.profile_vert_len - 1) ? 0 : i_profile + 1;
const int spline_edge_start = spline_edges_start + info.spline_edge_len * i_profile;
const int next_spline_edge_start = spline_edges_start +
info.spline_edge_len * i_next_profile;
MPoly &poly = r_polys[ring_poly_offset + i_profile];
poly.loopstart = ring_segment_loop_offset;
poly.totloop = 4;
poly.flag = ME_SMOOTH;
MLoop &loop_a = r_loops[ring_segment_loop_offset];
loop_a.v = ring_vert_offset + i_profile;
loop_a.e = ring_edge_start + i_profile;
MLoop &loop_b = r_loops[ring_segment_loop_offset + 1];
loop_b.v = ring_vert_offset + i_next_profile;
loop_b.e = next_spline_edge_start + i_ring;
MLoop &loop_c = r_loops[ring_segment_loop_offset + 2];
loop_c.v = next_ring_vert_offset + i_next_profile;
loop_c.e = next_ring_edge_offset + i_profile;
MLoop &loop_d = r_loops[ring_segment_loop_offset + 3];
loop_d.v = next_ring_vert_offset + i_profile;
loop_d.e = spline_edge_start + i_ring;
}
}
/* Calculate the positions of each profile ring profile along the spline. */
Span<float3> positions = spline.evaluated_positions();
Span<float3> tangents = spline.evaluated_tangents();
Span<float3> normals = spline.evaluated_normals();
Span<float3> profile_positions = profile.evaluated_positions();
GVArray_Typed<float> radii = spline.interpolate_to_evaluated(spline.radii());
for (const int i_ring : IndexRange(info.spline_vert_len)) {
float4x4 point_matrix = float4x4::from_normalized_axis_data(
positions[i_ring], normals[i_ring], tangents[i_ring]);
point_matrix.apply_scale(radii[i_ring]);
const int ring_vert_start = info.vert_offset + i_ring * info.profile_vert_len;
for (const int i_profile : IndexRange(info.profile_vert_len)) {
MVert &vert = r_verts[ring_vert_start + i_profile];
copy_v3_v3(vert.co, point_matrix * profile_positions[i_profile]);
}
}
/* Mark edge loops from sharp vector control points sharp. */
if (profile.type() == Spline::Type::Bezier) {
const BezierSpline &bezier_spline = static_cast<const BezierSpline &>(profile);
Span<int> control_point_offsets = bezier_spline.control_point_offsets();
for (const int i : IndexRange(bezier_spline.size())) {
if (bezier_spline.point_is_sharp(i)) {
mark_edges_sharp(
r_edges.slice(spline_edges_start + info.spline_edge_len * control_point_offsets[i],
info.spline_edge_len));
}
}
}
}
static inline int spline_extrude_vert_size(const Spline &curve, const Spline &profile)
{
return curve.evaluated_points_size() * profile.evaluated_points_size();
}
static inline int spline_extrude_edge_size(const Spline &curve, const Spline &profile)
{
/* Add the ring edges, with one ring for every curve vertex, and the edge loops
* that run along the length of the curve, starting on the first profile. */
return curve.evaluated_points_size() * profile.evaluated_edges_size() +
curve.evaluated_edges_size() * profile.evaluated_points_size();
}
static inline int spline_extrude_loop_size(const Spline &curve, const Spline &profile)
{
return curve.evaluated_edges_size() * profile.evaluated_edges_size() * 4;
}
static inline int spline_extrude_poly_size(const Spline &curve, const Spline &profile)
{
return curve.evaluated_edges_size() * profile.evaluated_edges_size();
}
struct ResultOffsets {
Array<int> vert;
Array<int> edge;
Array<int> loop;
Array<int> poly;
};
static ResultOffsets calculate_result_offsets(Span<SplinePtr> profiles, Span<SplinePtr> curves)
{
const int total = profiles.size() * curves.size();
Array<int> vert(total + 1);
Array<int> edge(total + 1);
Array<int> loop(total + 1);
Array<int> poly(total + 1);
int mesh_index = 0;
int vert_offset = 0;
int edge_offset = 0;
int loop_offset = 0;
int poly_offset = 0;
for (const int i_spline : curves.index_range()) {
for (const int i_profile : profiles.index_range()) {
vert[mesh_index] = vert_offset;
edge[mesh_index] = edge_offset;
loop[mesh_index] = loop_offset;
poly[mesh_index] = poly_offset;
vert_offset += spline_extrude_vert_size(*curves[i_spline], *profiles[i_profile]);
edge_offset += spline_extrude_edge_size(*curves[i_spline], *profiles[i_profile]);
loop_offset += spline_extrude_loop_size(*curves[i_spline], *profiles[i_profile]);
poly_offset += spline_extrude_poly_size(*curves[i_spline], *profiles[i_profile]);
mesh_index++;
}
}
vert.last() = vert_offset;
edge.last() = edge_offset;
loop.last() = loop_offset;
poly.last() = poly_offset;
return {std::move(vert), std::move(edge), std::move(loop), std::move(poly)};
}
static AttributeDomain get_result_attribute_domain(const MeshComponent &component,
const AttributeIDRef &attribute_id)
{
/* Only use a different domain if it is builtin and must only exist on one domain. */
if (!component.attribute_is_builtin(attribute_id)) {
return ATTR_DOMAIN_POINT;
}
std::optional<AttributeMetaData> meta_data = component.attribute_get_meta_data(attribute_id);
if (!meta_data) {
/* This function has to return something in this case, but it shouldn't be used,
* so return an output that will assert later if the code attempts to handle it. */
return ATTR_DOMAIN_AUTO;
}
return meta_data->domain;
}
/**
* The data stored in the attribute and its domain from #OutputAttribute, to avoid calling
* `as_span()` for every single profile and curve spline combination, and for readability.
*/
struct ResultAttributeData {
GMutableSpan data;
AttributeDomain domain;
};
static std::optional<ResultAttributeData> create_attribute_and_get_span(
MeshComponent &component,
const AttributeIDRef &attribute_id,
AttributeMetaData meta_data,
Vector<OutputAttribute> &r_attributes)
{
const AttributeDomain domain = get_result_attribute_domain(component, attribute_id);
OutputAttribute attribute = component.attribute_try_get_for_output_only(
attribute_id, domain, meta_data.data_type);
if (!attribute) {
return std::nullopt;
}
GMutableSpan span = attribute.as_span();
r_attributes.append(std::move(attribute));
return std::make_optional<ResultAttributeData>({span, domain});
}
/**
* Store the references to the attribute data from the curve and profile inputs. Here we rely on
* the invariants of the storage of curve attributes, that the order will be consistent between
* splines, and all splines will have the same attributes.
*/
struct ResultAttributes {
/**
* Result attributes on the mesh corresponding to each attribute on the curve input, in the same
* order. The data is optional only in case the attribute does not exist on the mesh for some
* reason, like "shade_smooth" when the result has no faces.
*/
Vector<std::optional<ResultAttributeData>> curve_point_attributes;
Vector<std::optional<ResultAttributeData>> curve_spline_attributes;
/**
* Result attributes corresponding the attributes on the profile input, in the same order. The
* attributes are optional in case the attribute names correspond to a names used by the curve
* input, in which case the curve input attributes take precedence.
*/
Vector<std::optional<ResultAttributeData>> profile_point_attributes;
Vector<std::optional<ResultAttributeData>> profile_spline_attributes;
/**
* Because some builtin attributes are not stored contiguously, and the curve inputs might have
* attributes with those names, it's necessary to keep OutputAttributes around to give access to
* the result data in a contiguous array.
*/
Vector<OutputAttribute> attributes;
};
static ResultAttributes create_result_attributes(const CurveEval &curve,
const CurveEval &profile,
Mesh &mesh)
{
MeshComponent mesh_component;
mesh_component.replace(&mesh, GeometryOwnershipType::Editable);
Set<AttributeIDRef> curve_attributes;
/* In order to prefer attributes on the main curve input when there are name collisions, first
* check the attributes on the curve, then add attributes on the profile that are not also on the
* main curve input. */
ResultAttributes result;
curve.splines().first()->attributes.foreach_attribute(
[&](const AttributeIDRef &id, const AttributeMetaData &meta_data) {
curve_attributes.add_new(id);
result.curve_point_attributes.append(
create_attribute_and_get_span(mesh_component, id, meta_data, result.attributes));
return true;
},
ATTR_DOMAIN_POINT);
curve.attributes.foreach_attribute(
[&](const AttributeIDRef &id, const AttributeMetaData &meta_data) {
curve_attributes.add_new(id);
result.curve_spline_attributes.append(
create_attribute_and_get_span(mesh_component, id, meta_data, result.attributes));
return true;
},
ATTR_DOMAIN_CURVE);
profile.splines().first()->attributes.foreach_attribute(
[&](const AttributeIDRef &id, const AttributeMetaData &meta_data) {
if (curve_attributes.contains(id)) {
result.profile_point_attributes.append({});
}
else {
result.profile_point_attributes.append(
create_attribute_and_get_span(mesh_component, id, meta_data, result.attributes));
}
return true;
},
ATTR_DOMAIN_POINT);
profile.attributes.foreach_attribute(
[&](const AttributeIDRef &id, const AttributeMetaData &meta_data) {
if (curve_attributes.contains(id)) {
result.profile_spline_attributes.append({});
}
else {
result.profile_spline_attributes.append(
create_attribute_and_get_span(mesh_component, id, meta_data, result.attributes));
}
return true;
},
ATTR_DOMAIN_CURVE);
return result;
}
template<typename T>
static void copy_curve_point_data_to_mesh_verts(const Span<T> src,
const ResultInfo &info,
MutableSpan<T> dst)
{
for (const int i_ring : IndexRange(info.spline_vert_len)) {
const int ring_vert_start = info.vert_offset + i_ring * info.profile_vert_len;
dst.slice(ring_vert_start, info.profile_vert_len).fill(src[i_ring]);
}
}
template<typename T>
static void copy_curve_point_data_to_mesh_edges(const Span<T> src,
const ResultInfo &info,
MutableSpan<T> dst)
{
const int edges_start = info.edge_offset + info.profile_vert_len * info.spline_edge_len;
for (const int i_ring : IndexRange(info.spline_vert_len)) {
const int ring_edge_start = edges_start + info.profile_edge_len * i_ring;
dst.slice(ring_edge_start, info.profile_edge_len).fill(src[i_ring]);
}
}
template<typename T>
static void copy_curve_point_data_to_mesh_faces(const Span<T> src,
const ResultInfo &info,
MutableSpan<T> dst)
{
for (const int i_ring : IndexRange(info.spline_edge_len)) {
const int ring_face_start = info.poly_offset + info.profile_edge_len * i_ring;
dst.slice(ring_face_start, info.profile_edge_len).fill(src[i_ring]);
}
}
static void copy_curve_point_attribute_to_mesh(const GSpan src,
const ResultInfo &info,
ResultAttributeData &dst)
{
GVArrayPtr interpolated_gvarray = info.spline.interpolate_to_evaluated(src);
GSpan interpolated = interpolated_gvarray->get_internal_span();
attribute_math::convert_to_static_type(src.type(), [&](auto dummy) {
using T = decltype(dummy);
switch (dst.domain) {
case ATTR_DOMAIN_POINT:
copy_curve_point_data_to_mesh_verts(interpolated.typed<T>(), info, dst.data.typed<T>());
break;
case ATTR_DOMAIN_EDGE:
copy_curve_point_data_to_mesh_edges(interpolated.typed<T>(), info, dst.data.typed<T>());
break;
case ATTR_DOMAIN_FACE:
copy_curve_point_data_to_mesh_faces(interpolated.typed<T>(), info, dst.data.typed<T>());
break;
case ATTR_DOMAIN_CORNER:
/* Unsupported for now, since there are no builtin attributes to convert into. */
break;
default:
BLI_assert_unreachable();
break;
}
});
}
template<typename T>
static void copy_profile_point_data_to_mesh_verts(const Span<T> src,
const ResultInfo &info,
MutableSpan<T> dst)
{
for (const int i_ring : IndexRange(info.spline_vert_len)) {
const int profile_vert_start = info.vert_offset + i_ring * info.profile_vert_len;
for (const int i_profile : IndexRange(info.profile_vert_len)) {
dst[profile_vert_start + i_profile] = src[i_profile];
}
}
}
template<typename T>
static void copy_profile_point_data_to_mesh_edges(const Span<T> src,
const ResultInfo &info,
MutableSpan<T> dst)
{
for (const int i_profile : IndexRange(info.profile_vert_len)) {
const int profile_edge_offset = info.edge_offset + i_profile * info.spline_edge_len;
dst.slice(profile_edge_offset, info.spline_edge_len).fill(src[i_profile]);
}
}
template<typename T>
static void copy_profile_point_data_to_mesh_faces(const Span<T> src,
const ResultInfo &info,
MutableSpan<T> dst)
{
for (const int i_ring : IndexRange(info.spline_edge_len)) {
const int profile_face_start = info.poly_offset + i_ring * info.profile_edge_len;
for (const int i_profile : IndexRange(info.profile_edge_len)) {
dst[profile_face_start + i_profile] = src[i_profile];
}
}
}
static void copy_profile_point_attribute_to_mesh(const GSpan src,
const ResultInfo &info,
ResultAttributeData &dst)
{
GVArrayPtr interpolated_gvarray = info.profile.interpolate_to_evaluated(src);
GSpan interpolated = interpolated_gvarray->get_internal_span();
attribute_math::convert_to_static_type(src.type(), [&](auto dummy) {
using T = decltype(dummy);
switch (dst.domain) {
case ATTR_DOMAIN_POINT:
copy_profile_point_data_to_mesh_verts(interpolated.typed<T>(), info, dst.data.typed<T>());
break;
case ATTR_DOMAIN_EDGE:
copy_profile_point_data_to_mesh_edges(interpolated.typed<T>(), info, dst.data.typed<T>());
break;
case ATTR_DOMAIN_FACE:
copy_profile_point_data_to_mesh_faces(interpolated.typed<T>(), info, dst.data.typed<T>());
break;
case ATTR_DOMAIN_CORNER:
/* Unsupported for now, since there are no builtin attributes to convert into. */
break;
default:
BLI_assert_unreachable();
break;
}
});
}
static void copy_point_domain_attributes_to_mesh(const ResultInfo &info,
ResultAttributes &attributes)
{
if (!attributes.curve_point_attributes.is_empty()) {
int i = 0;
info.spline.attributes.foreach_attribute(
[&](const AttributeIDRef &id, const AttributeMetaData &UNUSED(meta_data)) {
if (attributes.curve_point_attributes[i]) {
copy_curve_point_attribute_to_mesh(*info.spline.attributes.get_for_read(id),
info,
*attributes.curve_point_attributes[i]);
}
i++;
return true;
},
ATTR_DOMAIN_POINT);
}
if (!attributes.profile_point_attributes.is_empty()) {
int i = 0;
info.profile.attributes.foreach_attribute(
[&](const AttributeIDRef &id, const AttributeMetaData &UNUSED(meta_data)) {
if (attributes.profile_point_attributes[i]) {
copy_profile_point_attribute_to_mesh(*info.profile.attributes.get_for_read(id),
info,
*attributes.profile_point_attributes[i]);
}
i++;
return true;
},
ATTR_DOMAIN_POINT);
}
}
template<typename T>
static void copy_spline_data_to_mesh(Span<T> src, Span<int> offsets, MutableSpan<T> dst)
{
for (const int i : IndexRange(src.size())) {
dst.slice(offsets[i], offsets[i + 1] - offsets[i]).fill(src[i]);
}
}
/**
* Since the offsets for each combination of curve and profile spline are stored for every mesh
* domain, and this just needs to fill the chunks corresponding to each combination, we can use
* the same function for all mesh domains.
*/
static void copy_spline_attribute_to_mesh(const GSpan src,
const ResultOffsets &offsets,
ResultAttributeData &dst_attribute)
{
attribute_math::convert_to_static_type(src.type(), [&](auto dummy) {
using T = decltype(dummy);
switch (dst_attribute.domain) {
case ATTR_DOMAIN_POINT:
copy_spline_data_to_mesh(src.typed<T>(), offsets.vert, dst_attribute.data.typed<T>());
break;
case ATTR_DOMAIN_EDGE:
copy_spline_data_to_mesh(src.typed<T>(), offsets.edge, dst_attribute.data.typed<T>());
break;
case ATTR_DOMAIN_FACE:
copy_spline_data_to_mesh(src.typed<T>(), offsets.poly, dst_attribute.data.typed<T>());
break;
case ATTR_DOMAIN_CORNER:
copy_spline_data_to_mesh(src.typed<T>(), offsets.loop, dst_attribute.data.typed<T>());
break;
default:
BLI_assert_unreachable();
break;
}
});
}
static void copy_spline_domain_attributes_to_mesh(const CurveEval &curve,
const CurveEval &profile,
const ResultOffsets &offsets,
ResultAttributes &attributes)
{
if (!attributes.curve_spline_attributes.is_empty()) {
int i = 0;
curve.attributes.foreach_attribute(
[&](const AttributeIDRef &id, const AttributeMetaData &UNUSED(meta_data)) {
if (attributes.curve_spline_attributes[i]) {
copy_spline_attribute_to_mesh(*curve.attributes.get_for_read(id),
offsets,
*attributes.curve_spline_attributes[i]);
}
i++;
return true;
},
ATTR_DOMAIN_CURVE);
}
if (!attributes.profile_spline_attributes.is_empty()) {
int i = 0;
profile.attributes.foreach_attribute(
[&](const AttributeIDRef &id, const AttributeMetaData &UNUSED(meta_data)) {
if (attributes.profile_spline_attributes[i]) {
copy_spline_attribute_to_mesh(*profile.attributes.get_for_read(id),
offsets,
*attributes.profile_spline_attributes[i]);
}
i++;
return true;
},
ATTR_DOMAIN_CURVE);
}
}
/**
* \note Normal calculation is by far the slowest part of calculations relating to the result mesh.
* Although it would be a sensible decision to use the better topology information available while
* generating the mesh to also generate the normals, that work may wasted if the output mesh is
* changed anyway in a way that affects the normals. So currently this code uses the safer /
* simpler solution of deferring normal calculation to the rest of Blender.
*/
static Mesh *curve_to_mesh_calculate(const CurveEval &curve, const CurveEval &profile)
{
Span<SplinePtr> profiles = profile.splines();
Span<SplinePtr> curves = curve.splines();
const ResultOffsets offsets = calculate_result_offsets(profiles, curves);
if (offsets.vert.last() == 0) {
return nullptr;
}
Mesh *mesh = BKE_mesh_new_nomain(
offsets.vert.last(), offsets.edge.last(), 0, offsets.loop.last(), offsets.poly.last());
BKE_id_material_eval_ensure_default_slot(&mesh->id);
mesh->flag |= ME_AUTOSMOOTH;
mesh->smoothresh = DEG2RADF(180.0f);
BKE_mesh_normals_tag_dirty(mesh);
ResultAttributes attributes = create_result_attributes(curve, profile, *mesh);
threading::parallel_for(curves.index_range(), 128, [&](IndexRange curves_range) {
for (const int i_spline : curves_range) {
const Spline &spline = *curves[i_spline];
if (spline.evaluated_points_size() == 0) {
continue;
}
const int spline_start_index = i_spline * profiles.size();
threading::parallel_for(profiles.index_range(), 128, [&](IndexRange profiles_range) {
for (const int i_profile : profiles_range) {
const Spline &profile = *profiles[i_profile];
const int i_mesh = spline_start_index + i_profile;
ResultInfo info{
spline,
profile,
offsets.vert[i_mesh],
offsets.edge[i_mesh],
offsets.loop[i_mesh],
offsets.poly[i_mesh],
spline.evaluated_points_size(),
spline.evaluated_edges_size(),
profile.evaluated_points_size(),
profile.evaluated_edges_size(),
};
spline_extrude_to_mesh_data(info,
{mesh->mvert, mesh->totvert},
{mesh->medge, mesh->totedge},
{mesh->mloop, mesh->totloop},
{mesh->mpoly, mesh->totpoly});
copy_point_domain_attributes_to_mesh(info, attributes);
}
});
}
});
copy_spline_domain_attributes_to_mesh(curve, profile, offsets, attributes);
for (OutputAttribute &output_attribute : attributes.attributes) {
output_attribute.save();
}
return mesh;
}
static CurveEval get_curve_single_vert()
{
CurveEval curve;
std::unique_ptr<PolySpline> spline = std::make_unique<PolySpline>();
spline->add_point(float3(0), 0, 0.0f);
curve.add_spline(std::move(spline));
return curve;
}
static void geo_node_curve_to_mesh_exec(GeoNodeExecParams params)
{
GeometrySet curve_set = params.extract_input<GeometrySet>("Curve");
@ -750,11 +57,14 @@ static void geo_node_curve_to_mesh_exec(GeoNodeExecParams params)
const CurveEval *profile_curve = profile_set.get_curve_for_read();
static const CurveEval vert_curve = get_curve_single_vert();
Mesh *mesh = curve_to_mesh_calculate(*curve_set.get_curve_for_read(),
(profile_curve == nullptr) ? vert_curve : *profile_curve);
params.set_output("Mesh", GeometrySet::create_with_mesh(mesh));
if (profile_curve == nullptr) {
Mesh *mesh = bke::curve_to_wire_mesh(*curve_set.get_curve_for_read());
params.set_output("Mesh", GeometrySet::create_with_mesh(mesh));
}
else {
Mesh *mesh = bke::curve_to_mesh_sweep(*curve_set.get_curve_for_read(), *profile_curve);
params.set_output("Mesh", GeometrySet::create_with_mesh(mesh));
}
}
} // namespace blender::nodes