BLI: New 'BLI_array_iter_spiral_square'

No functional changes.

This function replaces some of the logic in
`DRW_select_buffer_find_nearest_to_point` that traverses a buffer in a
spiral way to search for a closer pixel (not the closest).

Differential Revision: https://developer.blender.org/D10548
This commit is contained in:
Germano Cavalcante 2021-03-09 16:02:40 -03:00
parent 80f7f1070f
commit cfd7b4d1cd
3 changed files with 135 additions and 62 deletions

View File

@ -89,6 +89,14 @@ bool _bli_array_iter_span(const void *arr,
bool _bli_array_is_zeroed(const void *arr, unsigned int arr_len, size_t arr_stride);
#define BLI_array_is_zeroed(arr, arr_len) _bli_array_is_zeroed(arr, arr_len, sizeof(*(arr)))
bool _bli_array_iter_spiral_square(const void *arr_v,
const int arr_shape[2],
const size_t elem_size,
const int center[2],
const bool (*test_fn)(const void *arr_item, void *user_data),
void *user_data);
#define BLI_array_iter_spiral_square(arr, arr_shape, center, test_fn, user_data) \
_bli_array_iter_spiral_square(arr, arr_shape, sizeof(*(arr)), center, test_fn, user_data)
#ifdef __cplusplus
}
#endif

View File

@ -27,13 +27,13 @@
#include "MEM_guardedalloc.h"
#include "BLI_array_utils.h"
#include "BLI_alloca.h"
#include "BLI_math_base.h"
#include "BLI_strict_flags.h"
#include "BLI_sys_types.h"
#include "BLI_utildefines.h"
#include "BLI_strict_flags.h"
#include "BLI_array_utils.h"
/**
*In-place array reverse.
@ -318,3 +318,94 @@ bool _bli_array_is_zeroed(const void *arr_v, unsigned int arr_len, size_t arr_st
}
return true;
}
/**
* Smart function to sample a rect spiraling outside.
* Nice for selection ID.
*
* \param arr_shape: dimensions [w, h].
* \param center: coordinates [x, y] indicating where to start transversing.
*/
bool _bli_array_iter_spiral_square(const void *arr_v,
const int arr_shape[2],
size_t elem_size,
const int center[2],
const bool (*test_fn)(const void *arr_item, void *user_data),
void *user_data)
{
BLI_assert(center[0] >= 0 && center[1] >= 0 && center[0] < arr_shape[0] &&
center[1] < arr_shape[1]);
const char *arr = arr_v;
const int stride[2] = {arr_shape[1] * (int)elem_size, (int)elem_size};
/* Test center first. */
int ofs[2] = {center[0] * stride[0], center[1] * stride[1]};
if (test_fn(arr + ofs[0] + ofs[1], user_data)) {
return true;
}
/* #steps_in and #steps_out are the "diameters" of the inscribed and ciscunscript squares in the
* rectangle. Each step smaller than #steps_in does not need to check bounds. */
int steps_in, steps_out;
{
int x_minus = center[0];
int x_plus = arr_shape[0] - center[0] - 1;
int y_minus = center[1];
int y_plus = arr_shape[1] - center[1] - 1;
steps_in = 2 * min_iiii(x_minus, x_plus, y_minus, y_plus);
steps_out = 2 * max_iiii(x_minus, x_plus, y_minus, y_plus);
}
/* For check_bounds. */
int limits[2] = {(arr_shape[0] - 1) * stride[0], stride[0] - stride[1]};
int steps = 0;
while (steps < steps_out) {
steps += 2;
/* Move one step to the diagonal of the negative quadrant. */
ofs[0] -= stride[0];
ofs[1] -= stride[1];
bool check_bounds = steps > steps_in;
/* sign: 0 neg; 1 pos; */
for (int sign = 2; sign--;) {
/* axis: 0 x; 1 y; */
for (int axis = 2; axis--;) {
int ofs_step = stride[axis];
if (!sign) {
ofs_step *= -1;
}
int ofs_iter = ofs[axis] + ofs_step;
int ofs_dest = ofs[axis] + steps * ofs_step;
int ofs_other = ofs[!axis];
ofs[axis] = ofs_dest;
if (check_bounds) {
if (ofs_other < 0 || ofs_other > limits[!axis]) {
/* Out of bounds. */
continue;
}
CLAMP(ofs_iter, 0, limits[axis]);
CLAMP(ofs_dest, 0, limits[axis]);
}
while (true) {
if (test_fn(arr + ofs_other + ofs_iter, user_data)) {
return true;
}
if (ofs_iter == ofs_dest) {
break;
}
ofs_iter += ofs_step;
}
}
}
}
return false;
}

View File

@ -24,6 +24,7 @@
#include "MEM_guardedalloc.h"
#include "BLI_array_utils.h"
#include "BLI_bitmap.h"
#include "BLI_bitmap_draw_2d.h"
#include "BLI_rect.h"
@ -336,6 +337,26 @@ uint DRW_select_buffer_sample_point(struct Depsgraph *depsgraph,
return ret;
}
struct SelectReadData {
const void *val_ptr;
uint id_min;
uint id_max;
uint r_index;
};
static bool select_buffer_test_fn(const void *__restrict value, void *__restrict userdata)
{
struct SelectReadData *data = userdata;
uint hit_id = *(uint *)value;
if (hit_id && hit_id >= data->id_min && hit_id < data->id_max) {
/* Start at 1 to confirm. */
data->val_ptr = value;
data->r_index = (hit_id - data->id_min) + 1;
return true;
}
return false;
}
/**
* Find the selection id closest to \a center.
* \param dist: Use to initialize the distance,
@ -349,13 +370,8 @@ uint DRW_select_buffer_find_nearest_to_point(struct Depsgraph *depsgraph,
const uint id_max,
uint *dist)
{
/* Smart function to sample a rect spiraling outside, nice for selection ID. */
/* Create region around center (typically the mouse cursor).
* This must be square and have an odd width,
* the spiraling algorithm does not work with arbitrary rectangles. */
uint index = 0;
* This must be square and have an odd width. */
rcti rect;
BLI_rcti_init_pt_radius(&rect, center, *dist);
@ -364,7 +380,6 @@ uint DRW_select_buffer_find_nearest_to_point(struct Depsgraph *depsgraph,
int width = BLI_rcti_size_x(&rect);
int height = width;
BLI_assert(width == height);
/* Read from selection framebuffer. */
@ -372,64 +387,23 @@ uint DRW_select_buffer_find_nearest_to_point(struct Depsgraph *depsgraph,
const uint *buf = DRW_select_buffer_read(depsgraph, region, v3d, &rect, &buf_len);
if (buf == NULL) {
return index;
return 0;
}
BLI_assert(width * height == buf_len);
const int shape[2] = {height, width};
const int center_yx[2] = {(height - 1) / 2, (width - 1) / 2};
struct SelectReadData data = {NULL, id_min, id_max, 0};
BLI_array_iter_spiral_square(buf, shape, center_yx, select_buffer_test_fn, &data);
/* Spiral, starting from center of buffer. */
int spiral_offset = height * (int)(width / 2) + (height / 2);
int spiral_direction = 0;
for (int nr = 1; nr <= height; nr++) {
for (int a = 0; a < 2; a++) {
for (int b = 0; b < nr; b++) {
/* Find hit within the specified range. */
uint hit_id = buf[spiral_offset];
if (hit_id && hit_id >= id_min && hit_id < id_max) {
/* Get x/y from spiral offset. */
int hit_x = spiral_offset % width;
int hit_y = spiral_offset / width;
int center_x = width / 2;
int center_y = height / 2;
/* Manhattan distance in keeping with other screen-based selection. */
*dist = (uint)(abs(hit_x - center_x) + abs(hit_y - center_y));
/* Indices start at 1 here. */
index = (hit_id - id_min) + 1;
goto exit;
}
/* Next spiral step. */
if (spiral_direction == 0) {
spiral_offset += 1; /* right */
}
else if (spiral_direction == 1) {
spiral_offset -= width; /* down */
}
else if (spiral_direction == 2) {
spiral_offset -= 1; /* left */
}
else {
spiral_offset += width; /* up */
}
/* Stop if we are outside the buffer. */
if (spiral_offset < 0 || spiral_offset >= buf_len) {
goto exit;
}
}
spiral_direction = (spiral_direction + 1) % 4;
}
if (data.val_ptr) {
size_t offset = ((size_t)data.val_ptr - (size_t)buf) / sizeof(*buf);
int hit_x = offset % width;
int hit_y = offset / width;
*dist = (uint)(abs(hit_y - center_yx[0]) + abs(hit_x - center_yx[1]));
}
exit:
MEM_freeN((void *)buf);
return index;
return data.r_index;
}
/** \} */