Cycles: Add multi-scattering, energy-conserving GGX as an option to the Glossy, Anisotropic and Glass BSDFs

This commit adds a new distribution to the Glossy, Anisotropic and Glass BSDFs that implements the
multiple-scattering microfacet model described in the paper "Multiple-Scattering Microfacet BSDFs with the Smith Model".

Essentially, the improvement is that unlike classical GGX, which only models single scattering and assumes
the contribution of multiple bounces to be zero, this new model performs a random walk on the microsurface until
the ray leaves it again, which ensures perfect energy conservation.

In practise, this means that the "darkening problem" - GGX materials becoming darker with increasing
roughness - is solved in a physically correct and efficient way.

The downside of this model is that it has no (known) analytic expression for evalation. However, it can be
evaluated stochastically, and although the correct PDF isn't known either, the properties of MIS and the
balance heuristic guarantee an unbiased result at the cost of slightly higher noise.

Reviewers: dingto, #cycles, brecht

Reviewed By: dingto, #cycles, brecht

Subscribers: bliblubli, ace_dragon, gregzaal, brecht, harvester, dingto, marcog, swerner, jtheninja, Blendify, nutel

Differential Revision: https://developer.blender.org/D2002
This commit is contained in:
Lukas Stockner 2016-06-23 22:56:43 +02:00
parent 2af4c80be6
commit 23c276832b
29 changed files with 1045 additions and 56 deletions

View File

@ -393,6 +393,9 @@ static ShaderNode *add_node(Scene *scene,
case BL::ShaderNodeBsdfAnisotropic::distribution_GGX:
aniso->distribution = CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID;
break;
case BL::ShaderNodeBsdfAnisotropic::distribution_MULTI_GGX:
aniso->distribution = CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID;
break;
case BL::ShaderNodeBsdfAnisotropic::distribution_ASHIKHMIN_SHIRLEY:
aniso->distribution = CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID;
break;
@ -439,6 +442,9 @@ static ShaderNode *add_node(Scene *scene,
case BL::ShaderNodeBsdfGlossy::distribution_ASHIKHMIN_SHIRLEY:
glossy->distribution = CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID;
break;
case BL::ShaderNodeBsdfGlossy::distribution_MULTI_GGX:
glossy->distribution = CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID;
break;
}
node = glossy;
}
@ -455,6 +461,9 @@ static ShaderNode *add_node(Scene *scene,
case BL::ShaderNodeBsdfGlass::distribution_GGX:
glass->distribution = CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID;
break;
case BL::ShaderNodeBsdfGlass::distribution_MULTI_GGX:
glass->distribution = CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID;
break;
}
node = glass;
}

View File

@ -76,6 +76,8 @@ set(SRC_CLOSURE_HEADERS
closure/bsdf_diffuse.h
closure/bsdf_diffuse_ramp.h
closure/bsdf_microfacet.h
closure/bsdf_microfacet_multi.h
closure/bsdf_microfacet_multi_impl.h
closure/bsdf_oren_nayar.h
closure/bsdf_phong_ramp.h
closure/bsdf_reflection.h

View File

@ -20,6 +20,7 @@
#include "../closure/bsdf_phong_ramp.h"
#include "../closure/bsdf_diffuse_ramp.h"
#include "../closure/bsdf_microfacet.h"
#include "../closure/bsdf_microfacet_multi.h"
#include "../closure/bsdf_reflection.h"
#include "../closure/bsdf_refraction.h"
#include "../closure/bsdf_transparent.h"
@ -35,7 +36,7 @@
CCL_NAMESPACE_BEGIN
ccl_device int bsdf_sample(KernelGlobals *kg, const ShaderData *sd, const ShaderClosure *sc, float randu, float randv, float3 *eval, float3 *omega_in, differential3 *domega_in, float *pdf)
ccl_device int bsdf_sample(KernelGlobals *kg, ShaderData *sd, const ShaderClosure *sc, float randu, float randv, float3 *eval, float3 *omega_in, differential3 *domega_in, float *pdf)
{
int label;
@ -85,6 +86,14 @@ ccl_device int bsdf_sample(KernelGlobals *kg, const ShaderData *sd, const Shader
label = bsdf_microfacet_ggx_sample(kg, sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
label = bsdf_microfacet_multi_ggx_sample(kg, sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf, &ccl_fetch(sd, lcg_state));
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
label = bsdf_microfacet_multi_ggx_glass_sample(kg, sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf, &ccl_fetch(sd, lcg_state));
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
@ -130,7 +139,7 @@ ccl_device int bsdf_sample(KernelGlobals *kg, const ShaderData *sd, const Shader
return label;
}
ccl_device float3 bsdf_eval(KernelGlobals *kg, const ShaderData *sd, const ShaderClosure *sc, const float3 omega_in, float *pdf)
ccl_device float3 bsdf_eval(KernelGlobals *kg, ShaderData *sd, const ShaderClosure *sc, const float3 omega_in, float *pdf)
{
float3 eval;
@ -172,6 +181,12 @@ ccl_device float3 bsdf_eval(KernelGlobals *kg, const ShaderData *sd, const Shade
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
eval = bsdf_microfacet_ggx_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
eval = bsdf_microfacet_multi_ggx_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf, &ccl_fetch(sd, lcg_state));
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
eval = bsdf_microfacet_multi_ggx_glass_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf, &ccl_fetch(sd, lcg_state));
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
@ -234,6 +249,12 @@ ccl_device float3 bsdf_eval(KernelGlobals *kg, const ShaderData *sd, const Shade
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
eval = bsdf_microfacet_ggx_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
eval = bsdf_microfacet_multi_ggx_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf, &ccl_fetch(sd, lcg_state));
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
eval = bsdf_microfacet_multi_ggx_glass_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf, &ccl_fetch(sd, lcg_state));
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
@ -286,6 +307,10 @@ ccl_device void bsdf_blur(KernelGlobals *kg, ShaderClosure *sc, float roughness)
#ifdef __SVM__
switch(sc->type) {
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
bsdf_microfacet_multi_ggx_blur(sc, roughness);
break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:

View File

@ -0,0 +1,472 @@
/*
* Copyright 2011-2016 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/* Most of the code is based on the supplemental implementations from https://eheitzresearch.wordpress.com/240-2/. */
/* === GGX Microfacet distribution functions === */
/* Isotropic GGX microfacet distribution */
ccl_device_inline float D_ggx(float3 wm, float alpha)
{
wm.z *= wm.z;
alpha *= alpha;
float tmp = (1.0f - wm.z) + alpha * wm.z;
return alpha / max(M_PI_F * tmp*tmp, 1e-7f);
}
/* Anisotropic GGX microfacet distribution */
ccl_device_inline float D_ggx_aniso(const float3 wm, const float2 alpha)
{
float slope_x = -wm.x/alpha.x;
float slope_y = -wm.y/alpha.y;
float tmp = wm.z*wm.z + slope_x*slope_x + slope_y*slope_y;
return 1.0f / max(M_PI_F * tmp*tmp * alpha.x*alpha.y, 1e-7f);
}
/* Sample slope distribution (based on page 14 of the supplemental implementation). */
ccl_device_inline float2 mf_sampleP22_11(const float cosI, const float2 randU)
{
if(cosI > 0.9999f) {
const float r = sqrtf(randU.x / (1.0f - randU.x));
const float phi = M_2PI_F * randU.y;
return make_float2(r*cosf(phi), r*sinf(phi));
}
const float sinI = sqrtf(1.0f - cosI*cosI);
const float tanI = sinI/cosI;
const float projA = 0.5f * (cosI + 1.0f);
if(projA < 0.0001f)
return make_float2(0.0f, 0.0f);
const float A = 2.0f*randU.x*projA / cosI - 1.0f;
float tmp = A*A-1.0f;
if(fabsf(tmp) < 1e-7f)
return make_float2(0.0f, 0.0f);
tmp = 1.0f / tmp;
const float D = safe_sqrtf(tanI*tanI*tmp*tmp - (A*A-tanI*tanI)*tmp);
const float slopeX2 = tanI*tmp + D;
const float slopeX = (A < 0.0f || slopeX2 > 1.0f/tanI)? (tanI*tmp - D) : slopeX2;
float U2;
if(randU.y >= 0.5f)
U2 = 2.0f*(randU.y - 0.5f);
else
U2 = 2.0f*(0.5f - randU.y);
const float z = (U2*(U2*(U2*0.27385f-0.73369f)+0.46341f)) / (U2*(U2*(U2*0.093073f+0.309420f)-1.0f)+0.597999f);
const float slopeY = z * sqrtf(1.0f + slopeX*slopeX);
if(randU.y >= 0.5f)
return make_float2(slopeX, slopeY);
else
return make_float2(slopeX, -slopeY);
}
/* Visible normal sampling for the GGX distribution (based on page 7 of the supplemental implementation). */
ccl_device_inline float3 mf_sample_vndf(const float3 wi, const float2 alpha, const float2 randU)
{
const float3 wi_11 = normalize(make_float3(alpha.x*wi.x, alpha.y*wi.y, wi.z));
const float2 slope_11 = mf_sampleP22_11(wi_11.z, randU);
const float2 cossin_phi = normalize(make_float2(wi_11.x, wi_11.y));
const float slope_x = alpha.x*(cossin_phi.x * slope_11.x - cossin_phi.y * slope_11.y);
const float slope_y = alpha.y*(cossin_phi.y * slope_11.x + cossin_phi.x * slope_11.y);
kernel_assert(isfinite(slope_x));
return normalize(make_float3(-slope_x, -slope_y, 1.0f));
}
/* === Phase functions: Glossy, Diffuse and Glass === */
/* Phase function for reflective materials, either without a fresnel term (for compatibility) or with the conductive fresnel term. */
ccl_device_inline float3 mf_sample_phase_glossy(const float3 wi, float3 *n, float3 *k, float3 *weight, const float3 wm)
{
if(n && k)
*weight *= fresnel_conductor(dot(wi, wm), *n, *k);
return -wi + 2.0f * wm * dot(wi, wm);
}
ccl_device_inline float3 mf_eval_phase_glossy(const float3 w, const float lambda, const float3 wo, const float2 alpha, float3 *n, float3 *k)
{
if(w.z > 0.9999f)
return make_float3(0.0f, 0.0f, 0.0f);
const float3 wh = normalize(wo - w);
if(wh.z < 0.0f)
return make_float3(0.0f, 0.0f, 0.0f);
float pArea = (w.z < -0.9999f)? 1.0f: lambda*w.z;
const float dotW_WH = dot(-w, wh);
if(dotW_WH < 0.0f)
return make_float3(0.0f, 0.0f, 0.0f);
float phase = max(0.0f, dotW_WH) * 0.25f / (pArea * dotW_WH);
if(alpha.x == alpha.y)
phase *= D_ggx(wh, alpha.x);
else
phase *= D_ggx_aniso(wh, alpha);
if(n && k) {
/* Apply conductive fresnel term. */
return phase * fresnel_conductor(dotW_WH, *n, *k);
}
return make_float3(phase, phase, phase);
}
/* Phase function for rough lambertian diffuse surfaces. */
ccl_device_inline float3 mf_sample_phase_diffuse(const float3 wm, const float randu, const float randv)
{
float3 tm, bm;
make_orthonormals(wm, &tm, &bm);
float2 disk = concentric_sample_disk(randu, randv);
return disk.x*tm + disk.y*bm + safe_sqrtf(1.0f - disk.x*disk.x - disk.y*disk.y)*wm;
}
ccl_device_inline float3 mf_eval_phase_diffuse(const float3 w, const float3 wm)
{
const float v = max(0.0f, dot(w, wm)) * M_1_PI_F;
return make_float3(v, v, v);
}
/* Phase function for dielectric transmissive materials, including both reflection and refraction according to the dielectric fresnel term. */
ccl_device_inline float3 mf_sample_phase_glass(const float3 wi, const float eta, const float3 wm, const float randV, bool *outside)
{
float cosI = dot(wi, wm);
float f = fresnel_dielectric_cos(cosI, eta);
if(randV < f) {
*outside = true;
return -wi + 2.0f * wm * cosI;
}
*outside = false;
float inv_eta = 1.0f/eta;
float cosT = -safe_sqrtf(1.0f - (1.0f - cosI*cosI) * inv_eta*inv_eta);
return normalize(wm*(cosI*inv_eta + cosT) - wi*inv_eta);
}
ccl_device_inline float3 mf_eval_phase_glass(const float3 w, const float lambda, const float3 wo, const bool wo_outside, const float2 alpha, const float eta)
{
if(w.z > 0.9999f)
return make_float3(0.0f, 0.0f, 0.0f);
float pArea = (w.z < -0.9999f)? 1.0f: lambda*w.z;
float v;
if(wo_outside) {
const float3 wh = normalize(wo - w);
if(wh.z < 0.0f)
return make_float3(0.0f, 0.0f, 0.0f);
const float dotW_WH = dot(-w, wh);
v = fresnel_dielectric_cos(dotW_WH, eta) * max(0.0f, dotW_WH) * D_ggx(wh, alpha.x) * 0.25f / (pArea * dotW_WH);
}
else {
float3 wh = normalize(wo*eta - w);
if(wh.z < 0.0f)
wh = -wh;
const float dotW_WH = dot(-w, wh), dotWO_WH = dot(wo, wh);
if(dotW_WH < 0.0f)
return make_float3(0.0f, 0.0f, 0.0f);
float temp = dotW_WH + eta*dotWO_WH;
v = (1.0f - fresnel_dielectric_cos(dotW_WH, eta)) * max(0.0f, dotW_WH) * max(0.0f, -dotWO_WH) * D_ggx(wh, alpha.x) / (pArea * temp * temp);
}
return make_float3(v, v, v);
}
/* === Utility functions for the random walks === */
/* Smith Lambda function for GGX (based on page 12 of the supplemental implementation). */
ccl_device_inline float mf_lambda(const float3 w, const float2 alpha)
{
if(w.z > 0.9999f)
return 0.0f;
else if(w.z < -0.9999f)
return -1.0f;
const float inv_wz2 = 1.0f / (w.z*w.z);
const float2 wa = make_float2(w.x, w.y)*alpha;
float v = sqrtf(1.0f + dot(wa, wa) * inv_wz2);
if(w.z <= 0.0f)
v = -v;
return 0.5f*(v - 1.0f);
}
/* Height distribution CDF (based on page 4 of the supplemental implementation). */
ccl_device_inline float mf_invC1(const float h)
{
return 2.0f * saturate(h) - 1.0f;
}
ccl_device_inline float mf_C1(const float h)
{
return saturate(0.5f * (h + 1.0f));
}
/* Masking function (based on page 16 of the supplemental implementation). */
ccl_device_inline float mf_G1(const float3 w, const float C1, const float lambda)
{
if(w.z > 0.9999f)
return 1.0f;
if(w.z < 1e-5f)
return 0.0f;
return powf(C1, lambda);
}
/* Sampling from the visible height distribution (based on page 17 of the supplemental implementation). */
ccl_device_inline bool mf_sample_height(const float3 w, float *h, float *C1, float *G1, float *lambda, const float U)
{
if(w.z > 0.9999f)
return false;
if(w.z < -0.9999f) {
*C1 *= U;
*h = mf_invC1(*C1);
*G1 = mf_G1(w, *C1, *lambda);
}
else if(fabsf(w.z) >= 0.0001f) {
if(U > 1.0f - *G1)
return false;
if(*lambda >= 0.0f) {
*C1 = 1.0f;
}
else {
*C1 *= powf(1.0f-U, -1.0f / *lambda);
}
*h = mf_invC1(*C1);
*G1 = mf_G1(w, *C1, *lambda);
}
return true;
}
/* === PDF approximations for the different phase functions. ===
* As explained in bsdf_microfacet_multi_impl.h, using approximations with MIS still produces an unbiased result. */
/* Approximation for the albedo of the single-scattering GGX distribution,
* the missing energy is then approximated as a diffuse reflection for the PDF. */
ccl_device_inline float mf_ggx_albedo(float r)
{
float albedo = 0.806495f*expf(-1.98712f*r*r) + 0.199531f;
albedo -= ((((((1.76741f*r - 8.43891f)*r + 15.784f)*r - 14.398f)*r + 6.45221f)*r - 1.19722f)*r + 0.027803f)*r + 0.00568739f;
return saturate(albedo);
}
ccl_device_inline float mf_ggx_pdf(const float3 wi, const float3 wo, const float alpha)
{
return 0.25f * D_ggx(normalize(wi+wo), alpha) / ((1.0f + mf_lambda(wi, make_float2(alpha, alpha))) * wi.z) + (1.0f - mf_ggx_albedo(alpha)) * wo.z;
}
ccl_device_inline float mf_ggx_aniso_pdf(const float3 wi, const float3 wo, const float2 alpha)
{
return 0.25f * D_ggx_aniso(normalize(wi+wo), alpha) / ((1.0f + mf_lambda(wi, alpha)) * wi.z) + (1.0f - mf_ggx_albedo(sqrtf(alpha.x*alpha.y))) * wo.z;
}
ccl_device_inline float mf_diffuse_pdf(const float3 wo)
{
return M_1_PI_F * wo.z;
}
ccl_device_inline float mf_glass_pdf(const float3 wi, const float3 wo, const float alpha, const float eta)
{
float3 wh;
float fresnel;
if(wi.z*wo.z > 0.0f) {
wh = normalize(wi + wo);
fresnel = fresnel_dielectric_cos(dot(wi, wh), eta);
}
else {
wh = normalize(wi + wo*eta);
fresnel = 1.0f - fresnel_dielectric_cos(dot(wi, wh), eta);
}
if(wh.z < 0.0f)
wh = -wh;
float3 r_wi = (wi.z < 0.0f)? -wi: wi;
return fresnel * max(0.0f, dot(r_wi, wh)) * D_ggx(wh, alpha) / ((1.0f + mf_lambda(r_wi, make_float2(alpha, alpha))) * r_wi.z) + fabsf(wo.z);
}
/* === Actual random walk implementations, one version of mf_eval and mf_sample per phase function. === */
#define MF_NAME_JOIN(x,y) x ## _ ## y
#define MF_NAME_EVAL(x,y) MF_NAME_JOIN(x,y)
#define MF_FUNCTION_FULL_NAME(prefix) MF_NAME_EVAL(prefix, MF_PHASE_FUNCTION)
#define MF_PHASE_FUNCTION glass
#define MF_MULTI_GLASS
#include "bsdf_microfacet_multi_impl.h"
/* The diffuse phase function is not implemented as a node yet. */
#if 0
#define MF_PHASE_FUNCTION diffuse
#define MF_MULTI_DIFFUSE
#include "bsdf_microfacet_multi_impl.h"
#endif
#define MF_PHASE_FUNCTION glossy
#define MF_MULTI_GLOSSY
#include "bsdf_microfacet_multi_impl.h"
ccl_device void bsdf_microfacet_multi_ggx_blur(ShaderClosure *sc, float roughness)
{
sc->data0 = fmaxf(roughness, sc->data0); /* alpha_x */
sc->data1 = fmaxf(roughness, sc->data1); /* alpha_y */
}
/* === Closure implementations === */
/* Multiscattering GGX Glossy closure */
ccl_device int bsdf_microfacet_multi_ggx_common_setup(ShaderClosure *sc)
{
sc->data0 = clamp(sc->data0, 1e-4f, 1.0f); /* alpha */
sc->data1 = clamp(sc->data1, 1e-4f, 1.0f);
sc->custom1 = saturate(sc->custom1); /* color */
sc->custom2 = saturate(sc->custom2);
sc->custom3 = saturate(sc->custom3);
sc->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_NEEDS_LCG|SD_BSDF_HAS_CUSTOM;
}
ccl_device int bsdf_microfacet_multi_ggx_aniso_setup(ShaderClosure *sc)
{
if(sc->T == make_float3(0.0f, 0.0f, 0.0f))
sc->T = make_float3(1.0f, 0.0f, 0.0f);
return bsdf_microfacet_multi_ggx_common_setup(sc);
}
ccl_device int bsdf_microfacet_multi_ggx_setup(ShaderClosure *sc)
{
sc->data1 = sc->data0;
return bsdf_microfacet_multi_ggx_common_setup(sc);
}
ccl_device float3 bsdf_microfacet_multi_ggx_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf, uint *lcg_state) {
*pdf = 0.0f;
return make_float3(0.0f, 0.0f, 0.0f);
}
ccl_device float3 bsdf_microfacet_multi_ggx_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf, uint *lcg_state) {
bool is_aniso = (sc->data0 != sc->data1);
float3 X, Y, Z;
Z = sc->N;
if(is_aniso)
make_orthonormals_tangent(Z, sc->T, &X, &Y);
else
make_orthonormals(Z, &X, &Y);
float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
float3 localO = make_float3(dot(omega_in, X), dot(omega_in, Y), dot(omega_in, Z));
if(is_aniso)
*pdf = mf_ggx_aniso_pdf(localI, localO, make_float2(sc->data0, sc->data1));
else
*pdf = mf_ggx_pdf(localI, localO, sc->data0);
return mf_eval_glossy(localI, localO, true, make_float3(sc->custom1, sc->custom2, sc->custom3), sc->data0, sc->data1, lcg_state, NULL, NULL);
}
ccl_device int bsdf_microfacet_multi_ggx_sample(KernelGlobals *kg, const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf, uint *lcg_state)
{
bool is_aniso = (sc->data0 != sc->data1);
float3 X, Y, Z;
Z = sc->N;
if(is_aniso)
make_orthonormals_tangent(Z, sc->T, &X, &Y);
else
make_orthonormals(Z, &X, &Y);
float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
float3 localO;
*eval = mf_sample_glossy(localI, &localO, make_float3(sc->custom1, sc->custom2, sc->custom3), sc->data0, sc->data1, lcg_state, NULL, NULL);
if(is_aniso)
*pdf = mf_ggx_aniso_pdf(localI, localO, make_float2(sc->data0, sc->data1));
else
*pdf = mf_ggx_pdf(localI, localO, sc->data0);
*eval *= *pdf;
*omega_in = X*localO.x + Y*localO.y + Z*localO.z;
return LABEL_REFLECT|LABEL_GLOSSY;
}
/* Multiscattering GGX Glass closure */
ccl_device int bsdf_microfacet_multi_ggx_glass_setup(ShaderClosure *sc)
{
sc->data0 = clamp(sc->data0, 1e-4f, 1.0f); /* alpha */
sc->data1 = sc->data0;
sc->data2 = max(0.0f, sc->data2); /* ior */
sc->custom1 = saturate(sc->custom1); /* color */
sc->custom2 = saturate(sc->custom2);
sc->custom3 = saturate(sc->custom3);
sc->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_NEEDS_LCG|SD_BSDF_HAS_CUSTOM;
}
ccl_device float3 bsdf_microfacet_multi_ggx_glass_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf, uint *lcg_state) {
float3 X, Y, Z;
Z = sc->N;
make_orthonormals(Z, &X, &Y);
float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
float3 localO = make_float3(dot(omega_in, X), dot(omega_in, Y), dot(omega_in, Z));
*pdf = mf_glass_pdf(localI, localO, sc->data0, sc->data2);
return mf_eval_glass(localI, localO, false, make_float3(sc->custom1, sc->custom2, sc->custom3), sc->data0, sc->data1, lcg_state, sc->data2);
}
ccl_device float3 bsdf_microfacet_multi_ggx_glass_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf, uint *lcg_state) {
float3 X, Y, Z;
Z = sc->N;
make_orthonormals(Z, &X, &Y);
float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
float3 localO = make_float3(dot(omega_in, X), dot(omega_in, Y), dot(omega_in, Z));
*pdf = mf_glass_pdf(localI, localO, sc->data0, sc->data2);
return mf_eval_glass(localI, localO, true, make_float3(sc->custom1, sc->custom2, sc->custom3), sc->data0, sc->data1, lcg_state, sc->data2);
}
ccl_device int bsdf_microfacet_multi_ggx_glass_sample(KernelGlobals *kg, const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf, uint *lcg_state)
{
float3 X, Y, Z;
Z = sc->N;
make_orthonormals(Z, &X, &Y);
float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
float3 localO;
*eval = mf_sample_glass(localI, &localO, make_float3(sc->custom1, sc->custom2, sc->custom3), sc->data0, sc->data1, lcg_state, sc->data2);
*pdf = mf_glass_pdf(localI, localO, sc->data0, sc->data2);
*eval *= *pdf;
*omega_in = X*localO.x + Y*localO.y + Z*localO.z;
if(localO.z*localI.z > 0.0f)
return LABEL_REFLECT|LABEL_GLOSSY;
else
return LABEL_TRANSMIT|LABEL_GLOSSY;
}
CCL_NAMESPACE_END

View File

@ -0,0 +1,220 @@
/*
* Copyright 2011-2016 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Evaluate the BSDF from wi to wo.
* Evaluation is split into the analytical single-scattering BSDF and the multi-scattering BSDF,
* which is evaluated stochastically through a random walk. At each bounce (except for the first one),
* the amount of reflection from here towards wo is evaluated before bouncing again.
*
* Because of the random walk, the evaluation is not deterministic, but its expected value is equal to
* the correct BSDF, which is enough for Monte-Carlo rendering. The PDF also can't be determined
* analytically, so the single-scattering PDF plus a diffuse term to account for the multi-scattered
* energy is used. In combination with MIS, that is enough to produce an unbiased result, although
* the balance heuristic isn't necessarily optimal anymore.
*/
ccl_device float3 MF_FUNCTION_FULL_NAME(mf_eval)(float3 wi, float3 wo, const bool wo_outside, const float3 color, const float alpha_x, const float alpha_y, uint* lcg_state
#ifdef MF_MULTI_GLASS
, const float eta
#elif defined(MF_MULTI_GLOSSY)
, float3 *n, float3 *k
#endif
)
{
/* Evaluating for a shallower incoming direction produces less noise, and the properties of the BSDF guarantee reciprocity. */
bool swapped = false;
#ifdef MF_MULTI_GLASS
if(wi.z*wo.z < 0.0f) {
/* Glass transmission is a special case and requires the directions to change hemisphere. */
if(-wo.z < wi.z) {
swapped = true;
float3 tmp = -wo;
wo = -wi;
wi = tmp;
}
}
else
#endif
if(wo.z < wi.z) {
swapped = true;
float3 tmp = wo;
wo = wi;
wi = tmp;
}
if(wi.z < 1e-5f || (wo.z < 1e-5f && wo_outside) || (wo.z > -1e-5f && !wo_outside))
return make_float3(0.0f, 0.0f, 0.0f);
const float2 alpha = make_float2(alpha_x, alpha_y);
float lambda_r = mf_lambda(-wi, alpha);
float shadowing_lambda = mf_lambda(wo_outside? wo: -wo, alpha);
/* Analytically compute single scattering for lower noise. */
float3 eval;
#ifdef MF_MULTI_GLASS
eval = mf_eval_phase_glass(-wi, lambda_r, wo, wo_outside, alpha, eta);
if(wo_outside)
eval *= -lambda_r / (shadowing_lambda - lambda_r);
else
eval *= -lambda_r * beta(-lambda_r, shadowing_lambda+1.0f);
#elif defined(MF_MULTI_DIFFUSE)
/* Diffuse has no special closed form for the single scattering bounce */
eval = make_float3(0.0f, 0.0f, 0.0f);
#else /* MF_MULTI_GLOSSY */
const float3 wh = normalize(wi+wo);
const float G2 = 1.0f / (1.0f - (lambda_r + 1.0f) + shadowing_lambda);
float val = G2 * 0.25f / wi.z;
if(alpha.x == alpha.y)
val *= D_ggx(wh, alpha.x);
else
val *= D_ggx_aniso(wh, alpha);
if(n && k) {
eval = fresnel_conductor(dot(wh, wi), *n, *k) * val;
}
else {
eval = make_float3(val, val, val);
}
#endif
float3 wr = -wi;
float hr = 1.0f;
float C1_r = 1.0f;
float G1_r = 0.0f;
bool outside = true;
float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
for(int order = 0; order < 10; order++) {
/* Sample microfacet height and normal */
if(!mf_sample_height(wr, &hr, &C1_r, &G1_r, &lambda_r, lcg_step_float(lcg_state)))
break;
float3 wm = mf_sample_vndf(-wr, alpha, make_float2(lcg_step_float(lcg_state), lcg_step_float(lcg_state)));
#ifdef MF_MULTI_DIFFUSE
if(order == 0) {
/* Compute single-scattering for diffuse. */
const float G2_G1 = -lambda_r / (shadowing_lambda - lambda_r);
eval += throughput * G2_G1 * mf_eval_phase_diffuse(wo, wm);
}
#endif
if(order > 0) {
/* Evaluate amount of scattering towards wo on this microfacet. */
float3 phase;
#ifdef MF_MULTI_GLASS
if(outside)
phase = mf_eval_phase_glass(wr, lambda_r, wo, wo_outside, alpha, eta);
else
phase = mf_eval_phase_glass(wr, lambda_r, -wo, !wo_outside, alpha, 1.0f/eta);
#elif defined(MF_MULTI_DIFFUSE)
phase = mf_eval_phase_diffuse(wo, wm);
#else /* MF_MULTI_GLOSSY */
phase = mf_eval_phase_glossy(wr, lambda_r, wo, alpha, n, k) * throughput;
#endif
eval += throughput * phase * mf_G1(wo_outside? wo: -wo, mf_C1((outside == wo_outside)? hr: -hr), shadowing_lambda);
}
if(order+1 < 10) {
/* Bounce from the microfacet. */
#ifdef MF_MULTI_GLASS
bool next_outside;
wr = mf_sample_phase_glass(-wr, outside? eta: 1.0f/eta, wm, lcg_step_float(lcg_state), &next_outside);
if(!next_outside) {
outside = !outside;
wr = -wr;
hr = -hr;
}
#elif defined(MF_MULTI_DIFFUSE)
wr = mf_sample_phase_diffuse(wm, lcg_step_float(lcg_state), lcg_step_float(lcg_state));
#else /* MF_MULTI_GLOSSY */
wr = mf_sample_phase_glossy(-wr, n, k, &throughput, wm);
#endif
lambda_r = mf_lambda(wr, alpha);
throughput *= color;
C1_r = mf_C1(hr);
G1_r = mf_G1(wr, C1_r, lambda_r);
}
}
if(swapped)
eval *= fabsf(wi.z / wo.z);
return eval;
}
/* Perform a random walk on the microsurface starting from wi, returning the direction in which the walk
* escaped the surface in wo. The function returns the throughput between wi and wo.
* Without reflection losses due to coloring or fresnel absorption in conductors, the sampling is optimal.
*/
ccl_device float3 MF_FUNCTION_FULL_NAME(mf_sample)(float3 wi, float3 *wo, const float3 color, const float alpha_x, const float alpha_y, uint *lcg_state
#ifdef MF_MULTI_GLASS
, const float eta
#elif defined(MF_MULTI_GLOSSY)
, float3 *n, float3 *k
#endif
)
{
const float2 alpha = make_float2(alpha_x, alpha_y);
float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
float3 wr = -wi;
float lambda_r = mf_lambda(wr, alpha);
float hr = 1.0f;
float C1_r = 1.0f;
float G1_r = 0.0f;
bool outside = true;
int order;
for(order = 0; order < 10; order++) {
/* Sample microfacet height. */
if(!mf_sample_height(wr, &hr, &C1_r, &G1_r, &lambda_r, lcg_step_float(lcg_state))) {
/* The random walk has left the surface. */
*wo = outside? wr: -wr;
return throughput;
}
/* Sample microfacet normal. */
float3 wm = mf_sample_vndf(-wr, alpha, make_float2(lcg_step_float(lcg_state), lcg_step_float(lcg_state)));
/* First-bounce color is already accounted for in mix weight. */
if(order > 0)
throughput *= color;
/* Bounce from the microfacet. */
#ifdef MF_MULTI_GLASS
bool next_outside;
wr = mf_sample_phase_glass(-wr, outside? eta: 1.0f/eta, wm, lcg_step_float(lcg_state), &next_outside);
if(!next_outside) {
hr = -hr;
wr = -wr;
outside = !outside;
}
#elif defined(MF_MULTI_DIFFUSE)
wr = mf_sample_phase_diffuse(wm, lcg_step_float(lcg_state), lcg_step_float(lcg_state));
#else /* MF_MULTI_GLOSSY */
wr = mf_sample_phase_glossy(-wr, n, k, &throughput, wm);
#endif
/* Update random walk parameters. */
lambda_r = mf_lambda(wr, alpha);
G1_r = mf_G1(wr, C1_r, lambda_r);
}
*wo = make_float3(0.0f, 0.0f, 1.0f);
return make_float3(0.0f, 0.0f, 0.0f);
}
#undef MF_MULTI_GLASS
#undef MF_MULTI_DIFFUSE
#undef MF_MULTI_GLOSSY
#undef MF_PHASE_FUNCTION

View File

@ -111,10 +111,9 @@ ccl_device float fresnel_dielectric_cos(float cosi, float eta)
return 1.0f; // TIR(no refracted component)
}
#if 0
ccl_device float3 fresnel_conductor(float cosi, const float3 eta, const float3 k)
{
float3 cosi2 = make_float3(cosi*cosi);
float3 cosi2 = make_float3(cosi*cosi, cosi*cosi, cosi*cosi);
float3 one = make_float3(1.0f, 1.0f, 1.0f);
float3 tmp_f = eta * eta + k * k;
float3 tmp = tmp_f * cosi2;
@ -124,7 +123,6 @@ ccl_device float3 fresnel_conductor(float cosi, const float3 eta, const float3 k
(tmp_f + (2.0f * eta * cosi) + cosi2);
return(Rparl2 + Rperp2) * 0.5f;
}
#endif
ccl_device float smooth_step(float edge0, float edge1, float x)
{

View File

@ -48,7 +48,7 @@ ccl_device void compute_light_pass(KernelGlobals *kg, ShaderData *sd, PathRadian
/* evaluate surface shader */
float rbsdf = path_state_rng_1D(kg, &rng, &state, PRNG_BSDF);
shader_eval_surface(kg, sd, &state, rbsdf, state.flag, SHADER_CONTEXT_MAIN);
shader_eval_surface(kg, sd, &rng, &state, rbsdf, state.flag, SHADER_CONTEXT_MAIN);
/* TODO, disable the closures we won't need */
@ -220,6 +220,7 @@ ccl_device_inline float3 kernel_bake_shader_bsdf(KernelGlobals *kg,
ccl_device float3 kernel_bake_evaluate_direct_indirect(KernelGlobals *kg,
ShaderData *sd,
RNG *rng,
PathState *state,
float3 direct,
float3 indirect,
@ -239,12 +240,12 @@ ccl_device float3 kernel_bake_evaluate_direct_indirect(KernelGlobals *kg,
}
else {
/* surface color of the pass only */
shader_eval_surface(kg, sd, state, 0.0f, 0, SHADER_CONTEXT_MAIN);
shader_eval_surface(kg, sd, rng, state, 0.0f, 0, SHADER_CONTEXT_MAIN);
return kernel_bake_shader_bsdf(kg, sd, type);
}
}
else {
shader_eval_surface(kg, sd, state, 0.0f, 0, SHADER_CONTEXT_MAIN);
shader_eval_surface(kg, sd, rng, state, 0.0f, 0, SHADER_CONTEXT_MAIN);
color = kernel_bake_shader_bsdf(kg, sd, type);
}
@ -336,7 +337,7 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
case SHADER_EVAL_NORMAL:
{
if((sd.flag & SD_HAS_BUMP)) {
shader_eval_surface(kg, &sd, &state, 0.f, 0, SHADER_CONTEXT_MAIN);
shader_eval_surface(kg, &sd, &rng, &state, 0.f, 0, SHADER_CONTEXT_MAIN);
}
/* compression: normal = (2 * color) - 1 */
@ -350,7 +351,7 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
}
case SHADER_EVAL_EMISSION:
{
shader_eval_surface(kg, &sd, &state, 0.f, 0, SHADER_CONTEXT_EMISSION);
shader_eval_surface(kg, &sd, &rng, &state, 0.f, 0, SHADER_CONTEXT_EMISSION);
out = shader_emissive_eval(kg, &sd);
break;
}
@ -403,6 +404,7 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
{
out = kernel_bake_evaluate_direct_indirect(kg,
&sd,
&rng,
&state,
L.direct_diffuse,
L.indirect_diffuse,
@ -414,6 +416,7 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
{
out = kernel_bake_evaluate_direct_indirect(kg,
&sd,
&rng,
&state,
L.direct_glossy,
L.indirect_glossy,
@ -425,6 +428,7 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
{
out = kernel_bake_evaluate_direct_indirect(kg,
&sd,
&rng,
&state,
L.direct_transmission,
L.indirect_transmission,
@ -437,6 +441,7 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
#ifdef __SUBSURFACE__
out = kernel_bake_evaluate_direct_indirect(kg,
&sd,
&rng,
&state,
L.direct_subsurface,
L.indirect_subsurface,

View File

@ -57,7 +57,7 @@ ccl_device_noinline float3 direct_emissive_eval(KernelGlobals *kg,
/* no path flag, we're evaluating this for all closures. that's weak but
* we'd have to do multiple evaluations otherwise */
path_state_modify_bounce(state, true);
shader_eval_surface(kg, emission_sd, state, 0.0f, 0, SHADER_CONTEXT_EMISSION);
shader_eval_surface(kg, emission_sd, NULL, state, 0.0f, 0, SHADER_CONTEXT_EMISSION);
path_state_modify_bounce(state, false);
/* evaluate emissive closure */

View File

@ -253,7 +253,7 @@ ccl_device void kernel_path_indirect(KernelGlobals *kg,
&isect,
ray);
float rbsdf = path_state_rng_1D_for_decision(kg, rng, state, PRNG_BSDF);
shader_eval_surface(kg, sd, state, rbsdf, state->flag, SHADER_CONTEXT_INDIRECT);
shader_eval_surface(kg, sd, rng, state, rbsdf, state->flag, SHADER_CONTEXT_INDIRECT);
#ifdef __BRANCHED_PATH__
shader_merge_closures(sd);
#endif
@ -791,7 +791,7 @@ ccl_device_inline float4 kernel_path_integrate(KernelGlobals *kg,
/* setup shading */
shader_setup_from_ray(kg, &sd, &isect, &ray);
float rbsdf = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_BSDF);
shader_eval_surface(kg, &sd, &state, rbsdf, state.flag, SHADER_CONTEXT_MAIN);
shader_eval_surface(kg, &sd, rng, &state, rbsdf, state.flag, SHADER_CONTEXT_MAIN);
/* holdout */
#ifdef __HOLDOUT__

View File

@ -463,7 +463,7 @@ ccl_device float4 kernel_branched_path_integrate(KernelGlobals *kg, RNG *rng, in
/* setup shading */
shader_setup_from_ray(kg, &sd, &isect, &ray);
shader_eval_surface(kg, &sd, &state, 0.0f, state.flag, SHADER_CONTEXT_MAIN);
shader_eval_surface(kg, &sd, rng, &state, 0.0f, state.flag, SHADER_CONTEXT_MAIN);
shader_merge_closures(&sd);
/* holdout */

View File

@ -468,6 +468,9 @@ ccl_device void shader_merge_closures(ShaderData *sd)
continue;
}
if((sd->flag & SD_BSDF_HAS_CUSTOM) && !(sci->custom1 == scj->custom1 && sci->custom2 == scj->custom2 && sci->custom3 == scj->custom3))
continue;
sci->weight += scj->weight;
sci->sample_weight += scj->sample_weight;
@ -488,7 +491,7 @@ ccl_device void shader_merge_closures(ShaderData *sd)
/* BSDF */
ccl_device_inline void _shader_bsdf_multi_eval(KernelGlobals *kg, const ShaderData *sd, const float3 omega_in, float *pdf,
ccl_device_inline void _shader_bsdf_multi_eval(KernelGlobals *kg, ShaderData *sd, const float3 omega_in, float *pdf,
int skip_bsdf, BsdfEval *result_eval, float sum_pdf, float sum_sample_weight)
{
/* this is the veach one-sample model with balance heuristic, some pdf
@ -517,7 +520,7 @@ ccl_device_inline void _shader_bsdf_multi_eval(KernelGlobals *kg, const ShaderDa
#ifdef __BRANCHED_PATH__
ccl_device_inline void _shader_bsdf_multi_eval_branched(KernelGlobals *kg,
const ShaderData *sd,
ShaderData *sd,
const float3 omega_in,
BsdfEval *result_eval,
float light_pdf,
@ -563,7 +566,7 @@ ccl_device void shader_bsdf_eval(KernelGlobals *kg,
}
}
ccl_device int shader_bsdf_sample(KernelGlobals *kg, const ShaderData *sd,
ccl_device int shader_bsdf_sample(KernelGlobals *kg, ShaderData *sd,
float randu, float randv, BsdfEval *bsdf_eval,
float3 *omega_in, differential3 *domega_in, float *pdf)
{
@ -620,7 +623,7 @@ ccl_device int shader_bsdf_sample(KernelGlobals *kg, const ShaderData *sd,
return label;
}
ccl_device int shader_bsdf_sample_closure(KernelGlobals *kg, const ShaderData *sd,
ccl_device int shader_bsdf_sample_closure(KernelGlobals *kg, ShaderData *sd,
const ShaderClosure *sc, float randu, float randv, BsdfEval *bsdf_eval,
float3 *omega_in, differential3 *domega_in, float *pdf)
{
@ -824,7 +827,7 @@ ccl_device float3 shader_holdout_eval(KernelGlobals *kg, ShaderData *sd)
/* Surface Evaluation */
ccl_device void shader_eval_surface(KernelGlobals *kg, ShaderData *sd,
ccl_device void shader_eval_surface(KernelGlobals *kg, ShaderData *sd, RNG *rng,
ccl_addr_space PathState *state, float randb, int path_flag, ShaderContext ctx)
{
ccl_fetch(sd, num_closure) = 0;
@ -846,6 +849,10 @@ ccl_device void shader_eval_surface(KernelGlobals *kg, ShaderData *sd,
ccl_fetch(sd, flag) |= bsdf_diffuse_setup(ccl_fetch_array(sd, closure, 0));
#endif
}
if(rng && (ccl_fetch(sd, flag) & SD_BSDF_NEEDS_LCG)) {
ccl_fetch(sd, lcg_state) = lcg_state_init(rng, state, 0xb4bc3953);
}
}
/* Background Evaluation */

View File

@ -117,7 +117,7 @@ ccl_device_inline bool shadow_blocked(KernelGlobals *kg, ShaderData *shadow_sd,
/* attenuation from transparent surface */
if(!(shadow_sd->flag & SD_HAS_ONLY_VOLUME)) {
path_state_modify_bounce(state, true);
shader_eval_surface(kg, shadow_sd, state, 0.0f, PATH_RAY_SHADOW, SHADER_CONTEXT_SHADOW);
shader_eval_surface(kg, shadow_sd, NULL, state, 0.0f, PATH_RAY_SHADOW, SHADER_CONTEXT_SHADOW);
path_state_modify_bounce(state, false);
throughput *= shader_bsdf_transparency(kg, shadow_sd);
@ -252,7 +252,7 @@ ccl_device_noinline bool shadow_blocked(KernelGlobals *kg,
/* attenuation from transparent surface */
if(!(ccl_fetch(shadow_sd, flag) & SD_HAS_ONLY_VOLUME)) {
path_state_modify_bounce(state, true);
shader_eval_surface(kg, shadow_sd, state, 0.0f, PATH_RAY_SHADOW, SHADER_CONTEXT_SHADOW);
shader_eval_surface(kg, shadow_sd, NULL, state, 0.0f, PATH_RAY_SHADOW, SHADER_CONTEXT_SHADOW);
path_state_modify_bounce(state, false);
throughput *= shader_bsdf_transparency(kg, shadow_sd);

View File

@ -198,7 +198,7 @@ ccl_device void subsurface_color_bump_blur(KernelGlobals *kg,
if(bump || texture_blur > 0.0f) {
/* average color and normal at incoming point */
shader_eval_surface(kg, sd, state, 0.0f, state_flag, SHADER_CONTEXT_SSS);
shader_eval_surface(kg, sd, NULL, state, 0.0f, state_flag, SHADER_CONTEXT_SSS);
float3 in_color = shader_bssrdf_sum(sd, (bump)? N: NULL, NULL);
/* we simply divide out the average color and multiply with the average

View File

@ -679,31 +679,34 @@ typedef enum ShaderContext {
enum ShaderDataFlag {
/* runtime flags */
SD_BACKFACING = (1 << 0), /* backside of surface? */
SD_EMISSION = (1 << 1), /* have emissive closure? */
SD_BSDF = (1 << 2), /* have bsdf closure? */
SD_BSDF_HAS_EVAL = (1 << 3), /* have non-singular bsdf closure? */
SD_BSSRDF = (1 << 4), /* have bssrdf */
SD_HOLDOUT = (1 << 5), /* have holdout closure? */
SD_ABSORPTION = (1 << 6), /* have volume absorption closure? */
SD_SCATTER = (1 << 7), /* have volume phase closure? */
SD_AO = (1 << 8), /* have ao closure? */
SD_TRANSPARENT = (1 << 9), /* have transparent closure? */
SD_BACKFACING = (1 << 0), /* backside of surface? */
SD_EMISSION = (1 << 1), /* have emissive closure? */
SD_BSDF = (1 << 2), /* have bsdf closure? */
SD_BSDF_HAS_EVAL = (1 << 3), /* have non-singular bsdf closure? */
SD_BSSRDF = (1 << 4), /* have bssrdf */
SD_HOLDOUT = (1 << 5), /* have holdout closure? */
SD_ABSORPTION = (1 << 6), /* have volume absorption closure? */
SD_SCATTER = (1 << 7), /* have volume phase closure? */
SD_AO = (1 << 8), /* have ao closure? */
SD_TRANSPARENT = (1 << 9), /* have transparent closure? */
SD_BSDF_NEEDS_LCG = (1 << 10),
SD_BSDF_HAS_CUSTOM = (1 << 11), /* are the custom variables relevant? */
SD_CLOSURE_FLAGS = (SD_EMISSION|SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSSRDF|
SD_HOLDOUT|SD_ABSORPTION|SD_SCATTER|SD_AO),
SD_HOLDOUT|SD_ABSORPTION|SD_SCATTER|SD_AO|
SD_BSDF_NEEDS_LCG|SD_BSDF_HAS_CUSTOM),
/* shader flags */
SD_USE_MIS = (1 << 10), /* direct light sample */
SD_HAS_TRANSPARENT_SHADOW = (1 << 11), /* has transparent shadow */
SD_HAS_VOLUME = (1 << 12), /* has volume shader */
SD_HAS_ONLY_VOLUME = (1 << 13), /* has only volume shader, no surface */
SD_HETEROGENEOUS_VOLUME = (1 << 14), /* has heterogeneous volume */
SD_HAS_BSSRDF_BUMP = (1 << 15), /* bssrdf normal uses bump */
SD_VOLUME_EQUIANGULAR = (1 << 16), /* use equiangular sampling */
SD_VOLUME_MIS = (1 << 17), /* use multiple importance sampling */
SD_VOLUME_CUBIC = (1 << 18), /* use cubic interpolation for voxels */
SD_HAS_BUMP = (1 << 19), /* has data connected to the displacement input */
SD_USE_MIS = (1 << 12), /* direct light sample */
SD_HAS_TRANSPARENT_SHADOW = (1 << 13), /* has transparent shadow */
SD_HAS_VOLUME = (1 << 14), /* has volume shader */
SD_HAS_ONLY_VOLUME = (1 << 15), /* has only volume shader, no surface */
SD_HETEROGENEOUS_VOLUME = (1 << 16), /* has heterogeneous volume */
SD_HAS_BSSRDF_BUMP = (1 << 17), /* bssrdf normal uses bump */
SD_VOLUME_EQUIANGULAR = (1 << 18), /* use equiangular sampling */
SD_VOLUME_MIS = (1 << 19), /* use multiple importance sampling */
SD_VOLUME_CUBIC = (1 << 20), /* use cubic interpolation for voxels */
SD_HAS_BUMP = (1 << 21), /* has data connected to the displacement input */
SD_SHADER_FLAGS = (SD_USE_MIS|SD_HAS_TRANSPARENT_SHADOW|SD_HAS_VOLUME|
SD_HAS_ONLY_VOLUME|SD_HETEROGENEOUS_VOLUME|
@ -711,13 +714,13 @@ enum ShaderDataFlag {
SD_VOLUME_CUBIC|SD_HAS_BUMP),
/* object flags */
SD_HOLDOUT_MASK = (1 << 20), /* holdout for camera rays */
SD_OBJECT_MOTION = (1 << 21), /* has object motion blur */
SD_TRANSFORM_APPLIED = (1 << 22), /* vertices have transform applied */
SD_NEGATIVE_SCALE_APPLIED = (1 << 23), /* vertices have negative scale applied */
SD_OBJECT_HAS_VOLUME = (1 << 24), /* object has a volume shader */
SD_OBJECT_INTERSECTS_VOLUME = (1 << 25), /* object intersects AABB of an object with volume shader */
SD_OBJECT_HAS_VERTEX_MOTION = (1 << 26), /* has position for motion vertices */
SD_HOLDOUT_MASK = (1 << 22), /* holdout for camera rays */
SD_OBJECT_MOTION = (1 << 23), /* has object motion blur */
SD_TRANSFORM_APPLIED = (1 << 24), /* vertices have transform applied */
SD_NEGATIVE_SCALE_APPLIED = (1 << 25), /* vertices have negative scale applied */
SD_OBJECT_HAS_VOLUME = (1 << 26), /* object has a volume shader */
SD_OBJECT_INTERSECTS_VOLUME = (1 << 27), /* object intersects AABB of an object with volume shader */
SD_OBJECT_HAS_VERTEX_MOTION = (1 << 28), /* has position for motion vertices */
SD_OBJECT_FLAGS = (SD_HOLDOUT_MASK|SD_OBJECT_MOTION|SD_TRANSFORM_APPLIED|
SD_NEGATIVE_SCALE_APPLIED|SD_OBJECT_HAS_VOLUME|
@ -806,6 +809,9 @@ typedef ccl_addr_space struct ShaderData {
int num_closure;
float randb_closure;
/* LCG state for closures that require additional random numbers. */
uint lcg_state;
/* ray start position, only set for backgrounds */
float3 ray_P;
differential3 ray_dP;

View File

@ -44,11 +44,13 @@
#include "kernel_compat_cpu.h"
#include "kernel_globals.h"
#include "kernel_montecarlo.h"
#include "kernel_random.h"
#include "closure/bsdf_util.h"
#include "closure/bsdf_ashikhmin_velvet.h"
#include "closure/bsdf_diffuse.h"
#include "closure/bsdf_microfacet.h"
#include "closure/bsdf_microfacet_multi.h"
#include "closure/bsdf_oren_nayar.h"
#include "closure/bsdf_reflection.h"
#include "closure/bsdf_refraction.h"
@ -205,6 +207,12 @@ void OSLShader::register_closures(OSLShadingSystem *ss_)
bsdf_microfacet_ggx_aniso_params(), bsdf_microfacet_ggx_aniso_prepare);
register_closure(ss, "microfacet_ggx_refraction", id++,
bsdf_microfacet_ggx_refraction_params(), bsdf_microfacet_ggx_refraction_prepare);
register_closure(ss, "microfacet_multi_ggx", id++,
closure_bsdf_microfacet_multi_ggx_params(), closure_bsdf_microfacet_multi_ggx_prepare);
register_closure(ss, "microfacet_multi_ggx_glass", id++,
closure_bsdf_microfacet_multi_ggx_glass_params(), closure_bsdf_microfacet_multi_ggx_glass_prepare);
register_closure(ss, "microfacet_multi_ggx_aniso", id++,
closure_bsdf_microfacet_multi_ggx_aniso_params(), closure_bsdf_microfacet_multi_ggx_aniso_prepare);
register_closure(ss, "microfacet_beckmann", id++,
bsdf_microfacet_beckmann_params(), bsdf_microfacet_beckmann_prepare);
register_closure(ss, "microfacet_beckmann_aniso", id++,
@ -250,5 +258,127 @@ void OSLShader::register_closures(OSLShadingSystem *ss_)
volume_absorption_params(), volume_absorption_prepare);
}
/* Multiscattering GGX closures */
class MicrofacetMultiClosure : public CBSDFClosure {
public:
float3 color;
/* Technically, the MultiGGX Glass closure may also transmit.
* However, since this is set statically and only used for caustic flags, this is probably as good as it gets. */
MicrofacetMultiClosure() : CBSDFClosure(LABEL_GLOSSY|LABEL_REFLECT)
{
}
void setup()
{
sc.prim = NULL;
sc.custom1 = color.x;
sc.custom2 = color.y;
sc.custom3 = color.z;
}
void blur(float roughness)
{
}
float3 eval_reflect(const float3 &omega_out, const float3 &omega_in, float& pdf) const
{
pdf = 0.0f;
return make_float3(0.0f, 0.0f, 0.0f);
}
float3 eval_transmit(const float3 &omega_out, const float3 &omega_in, float& pdf) const
{
pdf = 0.0f;
return make_float3(0.0f, 0.0f, 0.0f);
}
int sample(const float3 &Ng,
const float3 &omega_out, const float3 &domega_out_dx, const float3 &domega_out_dy,
float randu, float randv,
float3 &omega_in, float3 &domega_in_dx, float3 &domega_in_dy,
float &pdf, float3 &eval) const
{
pdf = 0;
return LABEL_NONE;
}
};
class MicrofacetMultiGGXClosure : public MicrofacetMultiClosure {
public:
MicrofacetMultiGGXClosure() : MicrofacetMultiClosure() {}
void setup()
{
MicrofacetMultiClosure::setup();
m_shaderdata_flag = bsdf_microfacet_multi_ggx_setup(&sc);
}
};
ClosureParam *closure_bsdf_microfacet_multi_ggx_params()
{
static ClosureParam params[] = {
CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXClosure, sc.N),
CLOSURE_FLOAT_PARAM(MicrofacetMultiGGXClosure, sc.data0),
CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXClosure, color),
CLOSURE_STRING_KEYPARAM(MicrofacetMultiGGXClosure, label, "label"),
CLOSURE_FINISH_PARAM(MicrofacetMultiGGXClosure)
};
return params;
}
CCLOSURE_PREPARE(closure_bsdf_microfacet_multi_ggx_prepare, MicrofacetMultiGGXClosure);
class MicrofacetMultiGGXAnisoClosure : public MicrofacetMultiClosure {
public:
MicrofacetMultiGGXAnisoClosure() : MicrofacetMultiClosure() {}
void setup()
{
MicrofacetMultiClosure::setup();
m_shaderdata_flag = bsdf_microfacet_multi_ggx_aniso_setup(&sc);
}
};
ClosureParam *closure_bsdf_microfacet_multi_ggx_aniso_params()
{
static ClosureParam params[] = {
CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXClosure, sc.N),
CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXClosure, sc.T),
CLOSURE_FLOAT_PARAM(MicrofacetMultiGGXClosure, sc.data0),
CLOSURE_FLOAT_PARAM(MicrofacetMultiGGXClosure, sc.data1),
CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXClosure, color),
CLOSURE_STRING_KEYPARAM(MicrofacetMultiGGXClosure, label, "label"),
CLOSURE_FINISH_PARAM(MicrofacetMultiGGXClosure)
};
return params;
}
CCLOSURE_PREPARE(closure_bsdf_microfacet_multi_ggx_aniso_prepare, MicrofacetMultiGGXAnisoClosure);
class MicrofacetMultiGGXGlassClosure : public MicrofacetMultiClosure {
public:
MicrofacetMultiGGXGlassClosure() : MicrofacetMultiClosure() {}
void setup()
{
MicrofacetMultiClosure::setup();
m_shaderdata_flag = bsdf_microfacet_multi_ggx_glass_setup(&sc);
}
};
ClosureParam *closure_bsdf_microfacet_multi_ggx_glass_params()
{
static ClosureParam params[] = {
CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXClosure, sc.N),
CLOSURE_FLOAT_PARAM(MicrofacetMultiGGXClosure, sc.data0),
CLOSURE_FLOAT_PARAM(MicrofacetMultiGGXClosure, sc.data2),
CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXClosure, color),
CLOSURE_STRING_KEYPARAM(MicrofacetMultiGGXClosure, label, "label"),
CLOSURE_FINISH_PARAM(MicrofacetMultiGGXClosure)
};
return params;
}
CCLOSURE_PREPARE(closure_bsdf_microfacet_multi_ggx_glass_prepare, MicrofacetMultiGGXGlassClosure);
CCL_NAMESPACE_END

View File

@ -52,6 +52,9 @@ OSL::ClosureParam *closure_bssrdf_cubic_params();
OSL::ClosureParam *closure_bssrdf_gaussian_params();
OSL::ClosureParam *closure_bssrdf_burley_params();
OSL::ClosureParam *closure_henyey_greenstein_volume_params();
OSL::ClosureParam *closure_bsdf_microfacet_multi_ggx_params();
OSL::ClosureParam *closure_bsdf_microfacet_multi_ggx_glass_params();
OSL::ClosureParam *closure_bsdf_microfacet_multi_ggx_aniso_params();
void closure_emission_prepare(OSL::RendererServices *, int id, void *data);
void closure_background_prepare(OSL::RendererServices *, int id, void *data);
@ -63,6 +66,9 @@ void closure_bssrdf_cubic_prepare(OSL::RendererServices *, int id, void *data);
void closure_bssrdf_gaussian_prepare(OSL::RendererServices *, int id, void *data);
void closure_bssrdf_burley_prepare(OSL::RendererServices *, int id, void *data);
void closure_henyey_greenstein_volume_prepare(OSL::RendererServices *, int id, void *data);
void closure_bsdf_microfacet_multi_ggx_prepare(OSL::RendererServices *, int id, void *data);
void closure_bsdf_microfacet_multi_ggx_glass_prepare(OSL::RendererServices *, int id, void *data);
void closure_bsdf_microfacet_multi_ggx_aniso_prepare(OSL::RendererServices *, int id, void *data);
#define CCLOSURE_PREPARE(name, classname) \
void name(RendererServices *, int id, void *data) \

View File

@ -177,6 +177,7 @@ static void flatten_surface_closure_tree(ShaderData *sd, int path_flag,
case CClosurePrimitive::BSDF: {
CBSDFClosure *bsdf = (CBSDFClosure *)prim;
int scattering = bsdf->scattering();
int shaderdata_flag = bsdf->shaderdata_flag();
/* caustic options */
if((scattering & LABEL_GLOSSY) && (path_flag & PATH_RAY_DIFFUSE)) {
@ -201,11 +202,16 @@ static void flatten_surface_closure_tree(ShaderData *sd, int path_flag,
sc.data1 = bsdf->sc.data1;
sc.data2 = bsdf->sc.data2;
sc.prim = bsdf->sc.prim;
if(shaderdata_flag & SD_BSDF_HAS_CUSTOM) {
sc.custom1 = bsdf->sc.custom1;
sc.custom2 = bsdf->sc.custom2;
sc.custom3 = bsdf->sc.custom3;
}
/* add */
if(sc.sample_weight > CLOSURE_WEIGHT_CUTOFF && sd->num_closure < MAX_CLOSURE) {
sd->closure[sd->num_closure++] = sc;
sd->flag |= bsdf->shaderdata_flag();
sd->flag |= shaderdata_flag;
}
break;
}

View File

@ -51,6 +51,8 @@ shader node_anisotropic_bsdf(
BSDF = Color * microfacet_beckmann_aniso(Normal, T, RoughnessU, RoughnessV);
else if (distribution == "GGX")
BSDF = Color * microfacet_ggx_aniso(Normal, T, RoughnessU, RoughnessV);
else if (distribution == "Multiscatter GGX")
BSDF = Color * microfacet_multi_ggx_aniso(Normal, T, RoughnessU, RoughnessV, Color);
else
BSDF = Color * ashikhmin_shirley(Normal, T, RoughnessU, RoughnessV);
}

View File

@ -35,6 +35,8 @@ shader node_glass_bsdf(
else if (distribution == "beckmann")
BSDF = Color * (Fr * microfacet_beckmann(Normal, Roughness) +
(1.0 - Fr) * microfacet_beckmann_refraction(Normal, Roughness, eta));
else if (distribution == "Multiscatter GGX")
BSDF = Color * microfacet_multi_ggx_glass(Normal, Roughness, eta, Color);
else if (distribution == "GGX")
BSDF = Color * (Fr * microfacet_ggx(Normal, Roughness) +
(1.0 - Fr) * microfacet_ggx_refraction(Normal, Roughness, eta));

View File

@ -30,6 +30,8 @@ shader node_glossy_bsdf(
BSDF = Color * microfacet_beckmann(Normal, Roughness);
else if (distribution == "GGX")
BSDF = Color * microfacet_ggx(Normal, Roughness);
else if (distribution == "Multiscatter GGX")
BSDF = Color * microfacet_multi_ggx(Normal, Roughness, Color);
else
BSDF = Color * ashikhmin_shirley(Normal, vector(0, 0, 0), Roughness, Roughness);

View File

@ -527,6 +527,9 @@ closure color transparent() BUILTIN;
closure color microfacet_ggx(normal N, float ag) BUILTIN;
closure color microfacet_ggx_aniso(normal N, vector T, float ax, float ay) BUILTIN;
closure color microfacet_ggx_refraction(normal N, float ag, float eta) BUILTIN;
closure color microfacet_multi_ggx(normal N, float ag, color C) BUILTIN;
closure color microfacet_multi_ggx_aniso(normal N, vector T, float ax, float ay, color C) BUILTIN;
closure color microfacet_multi_ggx_glass(normal N, float ag, float eta, color C) BUILTIN;
closure color microfacet_beckmann(normal N, float ab) BUILTIN;
closure color microfacet_beckmann_aniso(normal N, vector T, float ax, float ay) BUILTIN;
closure color microfacet_beckmann_refraction(normal N, float ab, float eta) BUILTIN;

View File

@ -65,6 +65,6 @@ ccl_device void kernel_shader_eval(
isect,
&ray);
float rbsdf = path_state_rng_1D_for_decision(kg, rng, state, PRNG_BSDF);
shader_eval_surface(kg, sd, state, rbsdf, state->flag, SHADER_CONTEXT_MAIN);
shader_eval_surface(kg, sd, rng, state, rbsdf, state->flag, SHADER_CONTEXT_MAIN);
}
}

View File

@ -186,7 +186,8 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
case CLOSURE_BSDF_REFLECTION_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID: {
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID: {
#ifdef __CAUSTICS_TRICKS__
if(!kernel_data.integrator.caustics_reflective && (path_flag & PATH_RAY_DIFFUSE))
break;
@ -206,6 +207,14 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
ccl_fetch(sd, flag) |= bsdf_microfacet_beckmann_setup(sc);
else if(type == CLOSURE_BSDF_MICROFACET_GGX_ID)
ccl_fetch(sd, flag) |= bsdf_microfacet_ggx_setup(sc);
else if(type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID) {
kernel_assert(stack_valid(data_node.z));
float3 color = stack_load_float3(stack, data_node.z);
sc->custom1 = color.x;
sc->custom2 = color.y;
sc->custom3 = color.z;
ccl_fetch(sd, flag) |= bsdf_microfacet_multi_ggx_setup(sc);
}
else
ccl_fetch(sd, flag) |= bsdf_ashikhmin_shirley_setup(sc);
}
@ -307,8 +316,36 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
break;
}
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID: {
#ifdef __CAUSTICS_TRICKS__
if(!kernel_data.integrator.caustics_reflective && !kernel_data.integrator.caustics_refractive && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->N = N;
sc->data0 = param1;
sc->data1 = param1;
float eta = fmaxf(param2, 1e-5f);
sc->data2 = (ccl_fetch(sd, flag) & SD_BACKFACING)? 1.0f/eta: eta;
kernel_assert(stack_valid(data_node.z));
float3 color = stack_load_float3(stack, data_node.z);
sc->custom1 = color.x;
sc->custom2 = color.y;
sc->custom3 = color.z;
/* setup bsdf */
ccl_fetch(sd, flag) |= bsdf_microfacet_multi_ggx_glass_setup(sc);
}
break;
}
case CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID:
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID: {
#ifdef __CAUSTICS_TRICKS__
if(!kernel_data.integrator.caustics_reflective && (path_flag & PATH_RAY_DIFFUSE))
@ -346,6 +383,14 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
ccl_fetch(sd, flag) |= bsdf_microfacet_beckmann_aniso_setup(sc);
else if(type == CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID)
ccl_fetch(sd, flag) |= bsdf_microfacet_ggx_aniso_setup(sc);
else if(type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID) {
kernel_assert(stack_valid(data_node.w));
float3 color = stack_load_float3(stack, data_node.w);
sc->custom1 = color.x;
sc->custom2 = color.y;
sc->custom3 = color.z;
ccl_fetch(sd, flag) |= bsdf_microfacet_multi_ggx_aniso_setup(sc);
}
else
ccl_fetch(sd, flag) |= bsdf_ashikhmin_shirley_aniso_setup(sc);
}

View File

@ -396,8 +396,10 @@ typedef enum ClosureType {
CLOSURE_BSDF_REFLECTION_ID,
CLOSURE_BSDF_MICROFACET_GGX_ID,
CLOSURE_BSDF_MICROFACET_BECKMANN_ID,
CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID,
CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID,
CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID,
CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID,
CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID,
CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID,
CLOSURE_BSDF_ASHIKHMIN_VELVET_ID,
@ -413,6 +415,7 @@ typedef enum ClosureType {
CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID,
CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID,
CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID,
CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID,
CLOSURE_BSDF_SHARP_GLASS_ID,
CLOSURE_BSDF_HAIR_TRANSMISSION_ID,

View File

@ -1828,6 +1828,7 @@ NODE_DEFINE(AnisotropicBsdfNode)
static NodeEnum distribution_enum;
distribution_enum.insert("beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID);
distribution_enum.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID);
distribution_enum.insert("Multiscatter GGX", CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID);
distribution_enum.insert("ashikhmin_shirley", CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID);
SOCKET_ENUM(distribution, "Distribution", distribution_enum, CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID);
@ -1864,7 +1865,10 @@ void AnisotropicBsdfNode::compile(SVMCompiler& compiler)
{
closure = distribution;
BsdfNode::compile(compiler, input("Roughness"), input("Anisotropy"), input("Rotation"));
if(closure == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID)
BsdfNode::compile(compiler, input("Roughness"), input("Anisotropy"), input("Rotation"), input("Color"));
else
BsdfNode::compile(compiler, input("Roughness"), input("Anisotropy"), input("Rotation"));
}
void AnisotropicBsdfNode::compile(OSLCompiler& compiler)
@ -1888,6 +1892,7 @@ NODE_DEFINE(GlossyBsdfNode)
distribution_enum.insert("beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_ID);
distribution_enum.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_ID);
distribution_enum.insert("ashikhmin_shirley", CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID);
distribution_enum.insert("Multiscatter GGX", CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID);
SOCKET_ENUM(distribution, "Distribution", distribution_enum, CLOSURE_BSDF_MICROFACET_GGX_ID);
SOCKET_IN_FLOAT(roughness, "Roughness", 0.2f);
@ -1937,6 +1942,8 @@ void GlossyBsdfNode::compile(SVMCompiler& compiler)
if(closure == CLOSURE_BSDF_REFLECTION_ID)
BsdfNode::compile(compiler, NULL, NULL);
else if(closure == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID)
BsdfNode::compile(compiler, input("Roughness"), NULL, input("Color"));
else
BsdfNode::compile(compiler, input("Roughness"), NULL);
}
@ -1961,6 +1968,7 @@ NODE_DEFINE(GlassBsdfNode)
distribution_enum.insert("sharp", CLOSURE_BSDF_SHARP_GLASS_ID);
distribution_enum.insert("beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID);
distribution_enum.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID);
distribution_enum.insert("Multiscatter GGX", CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID);
SOCKET_ENUM(distribution, "Distribution", distribution_enum, CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID);
SOCKET_IN_FLOAT(roughness, "Roughness", 0.0f);
SOCKET_IN_FLOAT(IOR, "IOR", 0.3f);
@ -2011,6 +2019,8 @@ void GlassBsdfNode::compile(SVMCompiler& compiler)
if(closure == CLOSURE_BSDF_SHARP_GLASS_ID)
BsdfNode::compile(compiler, NULL, input("IOR"));
else if(closure == CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID)
BsdfNode::compile(compiler, input("Roughness"), input("IOR"), input("Color"));
else
BsdfNode::compile(compiler, input("Roughness"), input("IOR"));
}

View File

@ -545,6 +545,11 @@ ccl_device_inline float3 normalize(const float3 a)
#endif
ccl_device_inline float3 saturate3(float3 a)
{
return make_float3(saturate(a.x), saturate(a.y), saturate(a.z));
}
ccl_device_inline float3 normalize_len(const float3 a, float *t)
{
*t = len(a);
@ -1329,6 +1334,15 @@ ccl_device float safe_modulo(float a, float b)
return (b != 0.0f)? fmodf(a, b): 0.0f;
}
ccl_device_inline float beta(float x, float y)
{
#ifndef __KERNEL_OPENCL__
return expf(lgammaf(x) + lgammaf(y) - lgammaf(x+y));
#else
return expf(lgamma(x) + lgamma(y) - lgamma(x+y));
#endif
}
/* Ray Intersection */
ccl_device bool ray_sphere_intersect(

View File

@ -912,7 +912,8 @@ typedef struct NodeSunBeams {
#define SHD_GLOSSY_BECKMANN 0
#define SHD_GLOSSY_SHARP 1
#define SHD_GLOSSY_GGX 2
#define SHD_GLOSSY_ASHIKHMIN_SHIRLEY 3
#define SHD_GLOSSY_ASHIKHMIN_SHIRLEY 3
#define SHD_GLOSSY_MULTI_GGX 4
/* vector transform */
#define SHD_VECT_TRANSFORM_TYPE_VECTOR 0

View File

@ -3193,17 +3193,27 @@ static EnumPropertyItem node_glossy_items[] = {
{SHD_GLOSSY_BECKMANN, "BECKMANN", 0, "Beckmann", ""},
{SHD_GLOSSY_GGX, "GGX", 0, "GGX", ""},
{SHD_GLOSSY_ASHIKHMIN_SHIRLEY, "ASHIKHMIN_SHIRLEY", 0, "Ashikhmin-Shirley", ""},
{SHD_GLOSSY_MULTI_GGX, "MULTI_GGX", 0, "Multiscatter GGX", ""},
{0, NULL, 0, NULL, NULL}
};
static EnumPropertyItem node_anisotropic_items[] = {
{SHD_GLOSSY_BECKMANN, "BECKMANN", 0, "Beckmann", ""},
{SHD_GLOSSY_GGX, "GGX", 0, "GGX", ""},
{SHD_GLOSSY_MULTI_GGX, "MULTI_GGX", 0, "Multiscatter GGX", ""},
{SHD_GLOSSY_ASHIKHMIN_SHIRLEY, "ASHIKHMIN_SHIRLEY", 0, "Ashikhmin-Shirley", ""},
{0, NULL, 0, NULL, NULL}
};
static EnumPropertyItem node_glass_items[] = {
{SHD_GLOSSY_SHARP, "SHARP", 0, "Sharp", ""},
{SHD_GLOSSY_BECKMANN, "BECKMANN", 0, "Beckmann", ""},
{SHD_GLOSSY_GGX, "GGX", 0, "GGX", ""},
{SHD_GLOSSY_MULTI_GGX, "MULTI_GGX", 0, "Multiscatter GGX", ""},
{0, NULL, 0, NULL, NULL}
};
static EnumPropertyItem node_refraction_items[] = {
{SHD_GLOSSY_SHARP, "SHARP", 0, "Sharp", ""},
{SHD_GLOSSY_BECKMANN, "BECKMANN", 0, "Beckmann", ""},
{SHD_GLOSSY_GGX, "GGX", 0, "GGX", ""},
@ -4159,6 +4169,17 @@ static void def_glass(StructRNA *srna)
RNA_def_property_update(prop, NC_NODE | NA_EDITED, "rna_Node_update");
}
static void def_refraction(StructRNA *srna)
{
PropertyRNA *prop;
prop = RNA_def_property(srna, "distribution", PROP_ENUM, PROP_NONE);
RNA_def_property_enum_sdna(prop, NULL, "custom1");
RNA_def_property_enum_items(prop, node_refraction_items);
RNA_def_property_ui_text(prop, "Distribution", "");
RNA_def_property_update(prop, NC_NODE | NA_EDITED, "rna_Node_update");
}
static void def_anisotropic(StructRNA *srna)
{
PropertyRNA *prop;

View File

@ -82,7 +82,7 @@ DefNode( ShaderNode, SH_NODE_BSDF_ANISOTROPIC, def_anisotropic, "BS
DefNode( ShaderNode, SH_NODE_BSDF_DIFFUSE, 0, "BSDF_DIFFUSE", BsdfDiffuse, "Diffuse BSDF", "" )
DefNode( ShaderNode, SH_NODE_BSDF_GLOSSY, def_glossy, "BSDF_GLOSSY", BsdfGlossy, "Glossy BSDF", "" )
DefNode( ShaderNode, SH_NODE_BSDF_GLASS, def_glass, "BSDF_GLASS", BsdfGlass, "Glass BSDF", "" )
DefNode( ShaderNode, SH_NODE_BSDF_REFRACTION, def_glass, "BSDF_REFRACTION", BsdfRefraction, "Refraction BSDF", "" )
DefNode( ShaderNode, SH_NODE_BSDF_REFRACTION, def_refraction, "BSDF_REFRACTION", BsdfRefraction, "Refraction BSDF", "" )
DefNode( ShaderNode, SH_NODE_BSDF_TRANSLUCENT, 0, "BSDF_TRANSLUCENT", BsdfTranslucent, "Translucent BSDF", "" )
DefNode( ShaderNode, SH_NODE_BSDF_TRANSPARENT, 0, "BSDF_TRANSPARENT", BsdfTransparent, "Transparent BSDF", "" )
DefNode( ShaderNode, SH_NODE_BSDF_VELVET, 0, "BSDF_VELVET", BsdfVelvet, "Velvet BSDF", "" )