Curves: support converting curves to legacy hair system

This adds a new operator that converts all selected curves objects
into hair particle systems on their respective surface objects. Existing
particle systems with the correct name are updated, otherwise a new
particle system is added.

The purpose of the operator is the make the new curve sculpting tools
useful even before all functionality is ported over from the old hair system.

The operator can be found in the `Object > Convert` menu in object mode,
when a curves object is active.

Differential Revision: https://developer.blender.org/D14441
This commit is contained in:
Jacques Lucke 2022-03-30 13:29:31 +02:00
parent 9b25fafbec
commit 3656e66ac2
Notes: blender-bot 2023-02-14 08:47:25 +01:00
Referenced by issue #96674, Operator to convert from new curves to old hair system.
2 changed files with 284 additions and 0 deletions

View File

@ -2865,6 +2865,9 @@ class VIEW3D_MT_object_convert(Menu):
if bpy.app.build_options.potrace:
layout.operator("gpencil.trace_image", icon='OUTLINER_OB_GREASEPENCIL')
if ob and ob.type == 'CURVES':
layout.operator("curves.convert_to_particle_system", text="Particle System")
class VIEW3D_MT_make_links(Menu):
bl_label = "Link/Transfer Data"

View File

@ -4,8 +4,289 @@
* \ingroup edcurves
*/
#include "BLI_utildefines.h"
#include "ED_curves.h"
#include "ED_object.h"
#include "WM_api.h"
#include "BKE_context.h"
#include "BKE_curves.hh"
#include "BKE_layer.h"
#include "BKE_mesh.h"
#include "BKE_mesh_runtime.h"
#include "BKE_paint.h"
#include "BKE_particle.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_types.h"
#include "DNA_particle_types.h"
#include "DNA_scene_types.h"
#include "DEG_depsgraph.h"
/**
* The code below uses a suffix naming convention to indicate the coordinate space:
* cu: Local space of the curves object that is being edited.
* su: Local space of the surface object.
* wo: World space.
* ha: Local space of an individual hair in the legacy hair system.
*/
namespace blender::ed::curves {
using bke::CurvesGeometry;
namespace convert_to_particle_system {
static int find_mface_for_root_position(const Mesh &mesh,
const Span<int> possible_mface_indices,
const float3 &root_pos)
{
BLI_assert(possible_mface_indices.size() >= 1);
if (possible_mface_indices.size() == 1) {
return possible_mface_indices.first();
}
/* Find the closest #MFace to #root_pos. */
int mface_i;
float best_distance_sq = FLT_MAX;
for (const int possible_mface_i : possible_mface_indices) {
const MFace &possible_mface = mesh.mface[possible_mface_i];
{
float3 point_in_triangle;
closest_on_tri_to_point_v3(point_in_triangle,
root_pos,
mesh.mvert[possible_mface.v1].co,
mesh.mvert[possible_mface.v2].co,
mesh.mvert[possible_mface.v3].co);
const float distance_sq = len_squared_v3v3(root_pos, point_in_triangle);
if (distance_sq < best_distance_sq) {
best_distance_sq = distance_sq;
mface_i = possible_mface_i;
}
}
/* Optionally check the second triangle if the #MFace is a quad. */
if (possible_mface.v4) {
float3 point_in_triangle;
closest_on_tri_to_point_v3(point_in_triangle,
root_pos,
mesh.mvert[possible_mface.v1].co,
mesh.mvert[possible_mface.v3].co,
mesh.mvert[possible_mface.v4].co);
const float distance_sq = len_squared_v3v3(root_pos, point_in_triangle);
if (distance_sq < best_distance_sq) {
best_distance_sq = distance_sq;
mface_i = possible_mface_i;
}
}
}
return mface_i;
}
/**
* \return Barycentric coordinates in the #MFace.
*/
static float4 compute_mface_weights_for_position(const Mesh &mesh,
const MFace &mface,
const float3 &position)
{
float4 mface_weights;
if (mface.v4) {
float mface_verts_su[4][3];
copy_v3_v3(mface_verts_su[0], mesh.mvert[mface.v1].co);
copy_v3_v3(mface_verts_su[1], mesh.mvert[mface.v2].co);
copy_v3_v3(mface_verts_su[2], mesh.mvert[mface.v3].co);
copy_v3_v3(mface_verts_su[3], mesh.mvert[mface.v4].co);
interp_weights_poly_v3(mface_weights, mface_verts_su, 4, position);
}
else {
interp_weights_tri_v3(mface_weights,
mesh.mvert[mface.v1].co,
mesh.mvert[mface.v2].co,
mesh.mvert[mface.v3].co,
position);
mface_weights[3] = 0.0f;
}
return mface_weights;
}
static int curves_convert_to_particle_system_exec(bContext *C, wmOperator *UNUSED(op))
{
Main *bmain = CTX_data_main(C);
Scene *scene = CTX_data_scene(C);
CTX_DATA_BEGIN (C, Object *, curves_ob, selected_objects) {
if (curves_ob->type != OB_CURVES) {
continue;
}
Curves &curves_id = *static_cast<Curves *>(curves_ob->data);
CurvesGeometry &curves = CurvesGeometry::wrap(curves_id.geometry);
if (curves_id.surface == nullptr) {
continue;
}
Object &surface_ob = *curves_id.surface;
if (surface_ob.type != OB_MESH) {
continue;
}
Mesh &surface_me = *static_cast<Mesh *>(surface_ob.data);
const Span<float3> positions_cu = curves.positions();
const VArray<int> looptri_indices = std::as_const(curves).surface_triangle_indices();
const Span<MLoopTri> looptris{BKE_mesh_runtime_looptri_ensure(&surface_me),
BKE_mesh_runtime_looptri_len(&surface_me)};
/* Find indices of curves that can be transferred to the old hair system. */
Vector<int> curves_indices_to_transfer;
for (const int curve_i : curves.curves_range()) {
const int looptri_i = looptri_indices[curve_i];
if (looptri_i >= 0 && looptri_i < looptris.size()) {
curves_indices_to_transfer.append(curve_i);
}
}
const int hairs_num = curves_indices_to_transfer.size();
if (hairs_num == 0) {
continue;
}
ParticleSystem *particle_system = nullptr;
LISTBASE_FOREACH (ParticleSystem *, psys, &surface_ob.particlesystem) {
if (STREQ(psys->name, curves_ob->id.name + 2)) {
particle_system = psys;
break;
}
}
if (particle_system == nullptr) {
ParticleSystemModifierData &psmd = *reinterpret_cast<ParticleSystemModifierData *>(
object_add_particle_system(bmain, scene, &surface_ob, curves_ob->id.name + 2));
particle_system = psmd.psys;
}
ParticleSettings &settings = *particle_system->part;
psys_free_particles(particle_system);
settings.type = PART_HAIR;
settings.totpart = 0;
psys_changed_type(&surface_ob, particle_system);
MutableSpan<ParticleData> particles{
static_cast<ParticleData *>(MEM_calloc_arrayN(hairs_num, sizeof(ParticleData), __func__)),
hairs_num};
/* The old hair system still uses #MFace, so make sure those are available on the mesh. */
BKE_mesh_tessface_calc(&surface_me);
/* Prepare utility data structure to map hair roots to mfaces. */
const Span<int> mface_to_poly_map{
static_cast<int *>(CustomData_get_layer(&surface_me.fdata, CD_ORIGINDEX)),
surface_me.totface};
Array<Vector<int>> poly_to_mface_map(surface_me.totpoly);
for (const int mface_i : mface_to_poly_map.index_range()) {
const int poly_i = mface_to_poly_map[mface_i];
poly_to_mface_map[poly_i].append(mface_i);
}
/* Prepare transformation matrices. */
const float4x4 curves_to_world_mat = curves_ob->obmat;
const float4x4 surface_to_world_mat = surface_ob.obmat;
const float4x4 world_to_surface_mat = surface_to_world_mat.inverted();
const float4x4 curves_to_surface_mat = world_to_surface_mat * curves_to_world_mat;
for (const int new_hair_i : curves_indices_to_transfer.index_range()) {
const int curve_i = curves_indices_to_transfer[new_hair_i];
const IndexRange points = curves.points_for_curve(curve_i);
const int looptri_i = looptri_indices[curve_i];
const MLoopTri &looptri = looptris[looptri_i];
const int poly_i = looptri.poly;
const float3 &root_pos_cu = positions_cu[points.first()];
const float3 root_pos_su = curves_to_surface_mat * root_pos_cu;
const int mface_i = find_mface_for_root_position(
surface_me, poly_to_mface_map[poly_i], root_pos_su);
const MFace &mface = surface_me.mface[mface_i];
const float4 mface_weights = compute_mface_weights_for_position(
surface_me, mface, root_pos_su);
ParticleData &particle = particles[new_hair_i];
const int num_keys = points.size();
MutableSpan<HairKey> hair_keys{
static_cast<HairKey *>(MEM_calloc_arrayN(num_keys, sizeof(HairKey), __func__)),
num_keys};
particle.hair = hair_keys.data();
particle.totkey = hair_keys.size();
copy_v4_v4(particle.fuv, mface_weights);
particle.num = mface_i;
/* Not sure if there is a better way to initialize this. */
particle.num_dmcache = DMCACHE_NOTFOUND;
float4x4 hair_to_surface_mat;
psys_mat_hair_to_object(
&surface_ob, &surface_me, PART_FROM_FACE, &particle, hair_to_surface_mat.values);
/* In theory, #psys_mat_hair_to_object should handle this, but it doesn't right now. */
copy_v3_v3(hair_to_surface_mat.values[3], root_pos_su);
const float4x4 surface_to_hair_mat = hair_to_surface_mat.inverted();
for (const int key_i : hair_keys.index_range()) {
const float3 &key_pos_cu = positions_cu[points[key_i]];
const float3 key_pos_su = curves_to_surface_mat * key_pos_cu;
const float3 key_pos_ha = surface_to_hair_mat * key_pos_su;
HairKey &key = hair_keys[key_i];
copy_v3_v3(key.co, key_pos_ha);
key.time = 100.0f * key_i / (float)(hair_keys.size() - 1);
}
}
particle_system->particles = particles.data();
particle_system->totpart = particles.size();
particle_system->flag |= PSYS_EDITED;
particle_system->recalc |= ID_RECALC_PSYS_RESET;
DEG_id_tag_update(&surface_ob.id, ID_RECALC_GEOMETRY);
DEG_id_tag_update(&settings.id, ID_RECALC_COPY_ON_WRITE);
}
CTX_DATA_END;
WM_main_add_notifier(NC_OBJECT | ND_PARTICLE | NA_EDITED, NULL);
return OPERATOR_FINISHED;
}
static bool curves_convert_to_particle_system_poll(bContext *C)
{
Object *ob = CTX_data_active_object(C);
if (ob == nullptr || ob->type != OB_CURVES) {
return false;
}
Curves &curves = *static_cast<Curves *>(ob->data);
return curves.surface != nullptr;
}
} // namespace convert_to_particle_system
static void CURVES_OT_convert_to_particle_system(wmOperatorType *ot)
{
ot->name = "Convert Curves to Particle System";
ot->idname = "CURVES_OT_convert_to_particle_system";
ot->description = "Add a new or update an existing hair particle system on the surface object";
ot->poll = convert_to_particle_system::curves_convert_to_particle_system_poll;
ot->exec = convert_to_particle_system::curves_convert_to_particle_system_exec;
ot->flag = OPTYPE_UNDO | OPTYPE_REGISTER;
}
} // namespace blender::ed::curves
void ED_operatortypes_curves()
{
using namespace blender::ed::curves;
WM_operatortype_append(CURVES_OT_convert_to_particle_system);
}