mathutils: added exponential map to Quaternion

Added conversion to and from exponential map representation. This
representation is useful for interpolation of > 2 quaternions, or in
PD controllers.

Implementation in C functions quat_to_expmap,
quat_normalized_to_expmap, and expmap_to_quat with Python API, unit
tests and documentation.

Added Quaternion.to_exponential_map() and Quaternion(3-vector) to
Python API.

Reviewers: campbellbarton

Projects: #bf_blender

Differential Revision: https://developer.blender.org/D1049
This commit is contained in:
Sybren A. Stüvel 2015-02-01 11:58:10 +01:00
parent 8c7e1b648b
commit 9fa628f35b
5 changed files with 117 additions and 2 deletions

View File

@ -21,3 +21,12 @@ print(quat_out)
print("%.2f, %.2f, %.2f" % tuple(math.degrees(a) for a in quat_out.to_euler()))
print("(%.2f, %.2f, %.2f), %.2f" % (quat_out.axis[:] +
(math.degrees(quat_out.angle), )))
# multiple rotations can be interpolated using the exponential map
quat_c = mathutils.Quaternion((1.0, 0.0, 0.0), math.radians(15.0))
exp_avg = (quat_a.to_exponential_map() +
quat_b.to_exponential_map() +
quat_c.to_exponential_map()) / 3.0
quat_avg = mathutils.Quaternion(exp_avg)
print("Average rotation:")
print(quat_avg)

View File

@ -119,6 +119,11 @@ void mat4_to_axis_angle(float axis[3], float *angle, float M[4][4]);
void axis_angle_to_mat3_single(float R[3][3], const char axis, const float angle);
void angle_to_mat2(float R[2][2], const float angle);
/****************************** Exponential Map ******************************/
void quat_to_expmap(float expmap[3], const float q[4]);
void quat_normalized_to_expmap(float expmap[3], const float q[4]);
void expmap_to_quat(float r[4], const float expmap[3]);
/******************************** XYZ Eulers *********************************/
void eul_to_quat(float quat[4], const float eul[3]);

View File

@ -1016,6 +1016,40 @@ void angle_to_mat2(float mat[2][2], const float angle)
mat[1][1] = angle_cos;
}
/****************************** Exponential Map ******************************/
void quat_normalized_to_expmap(float expmap[3], const float q[4])
{
float angle;
BLI_ASSERT_UNIT_QUAT(q);
/* Obtain axis/angle representation. */
quat_to_axis_angle(expmap, &angle, q);
/* Convert to exponential map. */
mul_v3_fl(expmap, angle);
}
void quat_to_expmap(float expmap[3], const float q[4])
{
float q_no[4];
normalize_qt_qt(q_no, q);
quat_normalized_to_expmap(expmap, q_no);
}
void expmap_to_quat(float r[4], const float expmap[3])
{
float axis[3];
float angle;
/* Obtain axis/angle representation. */
angle = normalize_v3_v3(axis, expmap);
angle = angle_wrap_rad(angle);
/* Convert to quaternion. */
axis_angle_to_quat(r, axis, angle);
}
/******************************** XYZ Eulers *********************************/
/* XYZ order */

View File

@ -177,6 +177,28 @@ static PyObject *Quaternion_to_axis_angle(QuaternionObject *self)
return ret;
}
PyDoc_STRVAR(Quaternion_to_exponential_map_doc,
".. method:: to_exponential_map()\n"
"\n"
" Return the exponential map representation of the quaternion.\n"
"\n"
" This representation consist of the rotation axis multiplied by the rotation angle."
" Such a representation is useful for interpolation between multiple orientations.\n"
"\n"
" :return: exponential map.\n"
" :rtype: :class:`Vector` of size 3\n"
);
static PyObject *Quaternion_to_exponential_map(QuaternionObject *self)
{
float expmap[3];
if (BaseMath_ReadCallback(self) == -1)
return NULL;
quat_to_expmap(expmap, self->quat);
return Vector_CreatePyObject(expmap, 3, NULL);
}
PyDoc_STRVAR(Quaternion_cross_doc,
".. method:: cross(other)\n"
"\n"
@ -1077,9 +1099,24 @@ static PyObject *Quaternion_new(PyTypeObject *type, PyObject *args, PyObject *kw
case 0:
break;
case 1:
if (mathutils_array_parse(quat, QUAT_SIZE, QUAT_SIZE, seq, "mathutils.Quaternion()") == -1)
{
int size;
if ((size = mathutils_array_parse(quat, 3, QUAT_SIZE, seq, "mathutils.Quaternion()")) == -1) {
return NULL;
}
if (size == 4) {
/* 4d: Quaternion (common case) */
}
else {
/* 3d: Interpret as exponential map */
BLI_assert(size == 3);
expmap_to_quat(quat, quat);
}
break;
}
case 2:
{
float axis[3];
@ -1156,6 +1193,7 @@ static struct PyMethodDef Quaternion_methods[] = {
{"to_euler", (PyCFunction) Quaternion_to_euler, METH_VARARGS, Quaternion_to_euler_doc},
{"to_matrix", (PyCFunction) Quaternion_to_matrix, METH_NOARGS, Quaternion_to_matrix_doc},
{"to_axis_angle", (PyCFunction) Quaternion_to_axis_angle, METH_NOARGS, Quaternion_to_axis_angle_doc},
{"to_exponential_map", (PyCFunction) Quaternion_to_exponential_map, METH_NOARGS, Quaternion_to_exponential_map_doc},
/* operation between 2 or more types */
{"cross", (PyCFunction) Quaternion_cross, METH_O, Quaternion_cross_doc},

View File

@ -2,7 +2,7 @@
# ./blender.bin --background -noaudio --python tests/python/bl_pyapi_mathutils.py -- --verbose
import unittest
from mathutils import Matrix, Vector
from mathutils import Matrix, Vector, Quaternion
from mathutils import kdtree
import math
@ -210,6 +210,35 @@ class VectorTesting(unittest.TestCase):
self.assertAlmostEqual(v.angle(v.orthogonal()), angle_90d)
class QuaternionTesting(unittest.TestCase):
def test_to_expmap(self):
q = Quaternion((0, 0, 1), math.radians(90))
e = q.to_exponential_map()
self.assertAlmostEqual(e.x, 0)
self.assertAlmostEqual(e.y, 0)
self.assertAlmostEqual(e.z, math.radians(90), 6)
def test_expmap_axis_normalization(self):
q = Quaternion((1, 1, 0), 2)
e = q.to_exponential_map()
self.assertAlmostEqual(e.x, 2 * math.sqrt(0.5), 6)
self.assertAlmostEqual(e.y, 2 * math.sqrt(0.5), 6)
self.assertAlmostEqual(e.z, 0)
def test_from_expmap(self):
e = Vector((1, 1, 0))
q = Quaternion(e)
axis, angle = q.to_axis_angle()
self.assertAlmostEqual(angle, math.sqrt(2), 6)
self.assertAlmostEqual(axis.x, math.sqrt(0.5), 6)
self.assertAlmostEqual(axis.y, math.sqrt(0.5), 6)
self.assertAlmostEqual(axis.z, 0)
class KDTreeTesting(unittest.TestCase):
@staticmethod