Cloud Generator: Cleanup, use do_unlink instead

Bumped version to 1.0.1
Pep8 cleanup
Use do_unlink istead of scene.objects.unlink
Add some report messages
Remove some commented out code
Update wiki link, remove redundant tracker_info
Note: possibly needs some more testing
This commit is contained in:
Vuk Gardašević 2017-07-28 14:36:13 +02:00
parent 89f470d0ca
commit 0df67a49cb
1 changed files with 219 additions and 248 deletions

View File

@ -21,115 +21,119 @@
bl_info = {
"name": "Cloud Generator",
"author": "Nick Keeline(nrk)",
"version": (1, 0),
"blender": (2, 77, 0),
"version": (1, 0, 1),
"blender": (2, 78, 5),
"location": "Tool Shelf > Create Tab",
"description": "Creates Volumetric Clouds",
"wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/"
"wiki_url": "https://wiki.blender.org/index.php/Extensions:2.6/Py/"
"Scripts/Object/Cloud_Gen",
"tracker_url" : "https://developer.blender.org/maniphest/project/3/type/Bug/",
"category": "Object",
}
import bpy
from bpy.props import BoolProperty, EnumProperty
from bpy.types import Operator, Panel
from bpy.props import (
BoolProperty,
EnumProperty,
)
from bpy.types import (
Operator,
Panel,
)
# For Cycles Render we create node groups or if it already exists we return it.
def CreateNodeGroup(Type):
# Look for NodeTree if it already exists return it
# Look for NodeTree if it already exists return it
CreateGroup = True
for Group in bpy.data.node_groups:
if Group.name == Type:
CreateGroup = False
NodeGroup = Group
if CreateGroup == True:
NodeGroup = bpy.data.node_groups.new(name=Type,type="ShaderNodeTree")
if CreateGroup is True:
NodeGroup = bpy.data.node_groups.new(name=Type, type="ShaderNodeTree")
NodeGroup.name = Type
NodeGroup.bl_label = Type
NodeGroup.nodes.clear()
# Create a bunch of nodes and group them based on input to the def
# Function type
# Create a bunch of nodes and group them based on input to the def
# Function type
if Type == 'CloudGen_VolumeProperties':
AddAddAndEmission = NodeGroup.nodes.new('ShaderNodeAddShader')
AddAddAndEmission.location = [300,395]
AddAddAndEmission.location = [300, 395]
AddAbsorptionAndScatter = NodeGroup.nodes.new('ShaderNodeAddShader')
AddAbsorptionAndScatter.location = [0,395]
AddAbsorptionAndScatter.location = [0, 395]
VolumeAbsorption = NodeGroup.nodes.new('ShaderNodeVolumeAbsorption')
VolumeAbsorption.location = [-300,395]
VolumeAbsorption.location = [-300, 395]
VolumeScatter = NodeGroup.nodes.new('ShaderNodeVolumeScatter')
VolumeScatter.location = [-300,0]
VolumeScatter.location = [-300, 0]
VolumeEmission = NodeGroup.nodes.new('ShaderNodeEmission')
VolumeEmission.location = [-300,-300]
VolumeEmission.location = [-300, -300]
MathAbsorptionMultiply = NodeGroup.nodes.new('ShaderNodeMath')
MathAbsorptionMultiply.location = [-750,395]
MathAbsorptionMultiply.location = [-750, 395]
MathAbsorptionMultiply.operation = 'MULTIPLY'
MathScatterMultiply = NodeGroup.nodes.new('ShaderNodeMath')
MathScatterMultiply.location = [-750,0]
MathScatterMultiply.location = [-750, 0]
MathScatterMultiply.operation = 'MULTIPLY'
MathEmissionMultiply = NodeGroup.nodes.new('ShaderNodeMath')
MathEmissionMultiply.location = [-750,-300]
MathEmissionMultiply.location = [-750, -300]
MathEmissionMultiply.operation = 'MULTIPLY'
MathBrightnessMultiply = NodeGroup.nodes.new('ShaderNodeMath')
MathBrightnessMultiply.location = [-1200,0]
MathBrightnessMultiply.location = [-1200, 0]
MathBrightnessMultiply.operation = 'MULTIPLY'
MathGreaterThan = NodeGroup.nodes.new('ShaderNodeMath')
MathGreaterThan.location = [-1200,600]
MathGreaterThan.location = [-1200, 600]
MathGreaterThan.operation = 'GREATER_THAN'
MathGreaterThan.inputs[1].default_value = 0
NodeGroup.links.new(AddAddAndEmission.inputs[0],AddAbsorptionAndScatter.outputs[0])
NodeGroup.links.new(AddAddAndEmission.inputs[1],VolumeEmission.outputs[0])
NodeGroup.links.new(AddAbsorptionAndScatter.inputs[0],VolumeAbsorption.outputs[0])
NodeGroup.links.new(AddAbsorptionAndScatter.inputs[1],VolumeScatter.outputs[0])
NodeGroup.links.new(VolumeAbsorption.inputs[1],MathAbsorptionMultiply.outputs[0])
NodeGroup.links.new(VolumeScatter.inputs[1],MathScatterMultiply.outputs[0])
NodeGroup.links.new(VolumeEmission.inputs[1],MathEmissionMultiply.outputs[0])
NodeGroup.links.new(MathAbsorptionMultiply.inputs[0],MathGreaterThan.outputs[0])
NodeGroup.links.new(MathScatterMultiply.inputs[0],MathGreaterThan.outputs[0])
NodeGroup.links.new(MathEmissionMultiply.inputs[0],MathGreaterThan.outputs[0])
NodeGroup.links.new(VolumeAbsorption.inputs[0],MathBrightnessMultiply.outputs[0])
NodeGroup.links.new(AddAddAndEmission.inputs[0], AddAbsorptionAndScatter.outputs[0])
NodeGroup.links.new(AddAddAndEmission.inputs[1], VolumeEmission.outputs[0])
NodeGroup.links.new(AddAbsorptionAndScatter.inputs[0], VolumeAbsorption.outputs[0])
NodeGroup.links.new(AddAbsorptionAndScatter.inputs[1], VolumeScatter.outputs[0])
NodeGroup.links.new(VolumeAbsorption.inputs[1], MathAbsorptionMultiply.outputs[0])
NodeGroup.links.new(VolumeScatter.inputs[1], MathScatterMultiply.outputs[0])
NodeGroup.links.new(VolumeEmission.inputs[1], MathEmissionMultiply.outputs[0])
NodeGroup.links.new(MathAbsorptionMultiply.inputs[0], MathGreaterThan.outputs[0])
NodeGroup.links.new(MathScatterMultiply.inputs[0], MathGreaterThan.outputs[0])
NodeGroup.links.new(MathEmissionMultiply.inputs[0], MathGreaterThan.outputs[0])
NodeGroup.links.new(VolumeAbsorption.inputs[0], MathBrightnessMultiply.outputs[0])
# Create and Link In/Out to Group Node
# Outputs
# Create and Link In/Out to Group Node
# Outputs
group_outputs = NodeGroup.nodes.new('NodeGroupOutput')
group_outputs.location = (600,395)
NodeGroup.outputs.new('NodeSocketShader','shader_out')
NodeGroup.links.new(AddAddAndEmission.outputs[0],group_outputs.inputs['shader_out'])
group_outputs.location = (600, 395)
NodeGroup.outputs.new('NodeSocketShader', 'shader_out')
NodeGroup.links.new(AddAddAndEmission.outputs[0], group_outputs.inputs['shader_out'])
# Inputs
# Inputs
group_inputs = NodeGroup.nodes.new('NodeGroupInput')
group_inputs.location = (-1500,-300)
NodeGroup.inputs.new('NodeSocketFloat','Density')
NodeGroup.inputs.new('NodeSocketFloat','Absorption Multiply')
NodeGroup.inputs.new('NodeSocketColor','Absorption Color')
NodeGroup.inputs.new('NodeSocketFloat','Scatter Multiply')
NodeGroup.inputs.new('NodeSocketColor','Scatter Color')
NodeGroup.inputs.new('NodeSocketFloat','Emission Amount')
NodeGroup.inputs.new('NodeSocketFloat','Cloud Brightness')
NodeGroup.links.new(group_inputs.outputs['Density'],MathGreaterThan.inputs[0])
NodeGroup.links.new(group_inputs.outputs['Absorption Multiply'],MathAbsorptionMultiply.inputs[1])
NodeGroup.links.new(group_inputs.outputs['Absorption Color'],MathBrightnessMultiply.inputs[0])
NodeGroup.links.new(group_inputs.outputs['Scatter Multiply'],MathScatterMultiply.inputs[1])
NodeGroup.links.new(group_inputs.outputs['Scatter Color'],VolumeScatter.inputs[0])
NodeGroup.links.new(group_inputs.outputs['Emission Amount'],MathEmissionMultiply.inputs[1])
NodeGroup.links.new(group_inputs.outputs['Cloud Brightness'],MathBrightnessMultiply.inputs[1])
group_inputs.location = (-1500, -300)
NodeGroup.inputs.new('NodeSocketFloat', 'Density')
NodeGroup.inputs.new('NodeSocketFloat', 'Absorption Multiply')
NodeGroup.inputs.new('NodeSocketColor', 'Absorption Color')
NodeGroup.inputs.new('NodeSocketFloat', 'Scatter Multiply')
NodeGroup.inputs.new('NodeSocketColor', 'Scatter Color')
NodeGroup.inputs.new('NodeSocketFloat', 'Emission Amount')
NodeGroup.inputs.new('NodeSocketFloat', 'Cloud Brightness')
NodeGroup.links.new(group_inputs.outputs['Density'], MathGreaterThan.inputs[0])
NodeGroup.links.new(group_inputs.outputs['Absorption Multiply'], MathAbsorptionMultiply.inputs[1])
NodeGroup.links.new(group_inputs.outputs['Absorption Color'], MathBrightnessMultiply.inputs[0])
NodeGroup.links.new(group_inputs.outputs['Scatter Multiply'], MathScatterMultiply.inputs[1])
NodeGroup.links.new(group_inputs.outputs['Scatter Color'], VolumeScatter.inputs[0])
NodeGroup.links.new(group_inputs.outputs['Emission Amount'], MathEmissionMultiply.inputs[1])
NodeGroup.links.new(group_inputs.outputs['Cloud Brightness'], MathBrightnessMultiply.inputs[1])
if Type == 'CloudGen_TextureProperties':
MathAdd = NodeGroup.nodes.new('ShaderNodeMath')
MathAdd.location = [-200,0]
MathAdd.location = [-200, 0]
MathAdd.operation = 'ADD'
MathDensityMultiply = NodeGroup.nodes.new('ShaderNodeMath')
MathDensityMultiply.location = [-390,0]
MathDensityMultiply.location = [-390, 0]
MathDensityMultiply.operation = 'MULTIPLY'
PointDensityRamp = NodeGroup.nodes.new('ShaderNodeValToRGB')
PointDensityRamp.location = [-675,-250]
PointDensityRamp.location = [-675, -250]
PointRamp = PointDensityRamp.color_ramp
PElements = PointRamp.elements
PElements[0].position = 0.418
@ -137,7 +141,7 @@ def CreateNodeGroup(Type):
PElements[1].position = 0.773
PElements[1].color = 1, 1, 1, 1
CloudRamp = NodeGroup.nodes.new('ShaderNodeValToRGB')
CloudRamp.location = [-675,0]
CloudRamp.location = [-675, 0]
CRamp = CloudRamp.color_ramp
CElements = CRamp.elements
CElements[0].position = 0.527
@ -145,36 +149,36 @@ def CreateNodeGroup(Type):
CElements[1].position = 0.759
CElements[1].color = 1, 1, 1, 1
NoiseTex = NodeGroup.nodes.new('ShaderNodeTexNoise')
NoiseTex.location = [-940,0]
NoiseTex.location = [-940, 0]
NoiseTex.inputs['Detail'].default_value = 4
TexCoord = NodeGroup.nodes.new('ShaderNodeTexCoord')
TexCoord.location = [-1250,0]
TexCoord.location = [-1250, 0]
NodeGroup.links.new(MathAdd.inputs[0], MathDensityMultiply.outputs[0])
NodeGroup.links.new(MathAdd.inputs[1], PointDensityRamp.outputs[0])
NodeGroup.links.new(MathDensityMultiply.inputs[0], CloudRamp.outputs[0])
NodeGroup.links.new(CloudRamp.inputs[0], NoiseTex.outputs[0])
NodeGroup.links.new(NoiseTex.inputs[0], TexCoord.outputs[3])
NodeGroup.links.new(MathAdd.inputs[0],MathDensityMultiply.outputs[0])
NodeGroup.links.new(MathAdd.inputs[1],PointDensityRamp.outputs[0])
NodeGroup.links.new(MathDensityMultiply.inputs[0],CloudRamp.outputs[0])
NodeGroup.links.new(CloudRamp.inputs[0],NoiseTex.outputs[0])
NodeGroup.links.new(NoiseTex.inputs[0],TexCoord.outputs[3])
# Create and Link In/Out to Group Nodes
# Outputs
# Create and Link In/Out to Group Nodes
# Outputs
group_outputs = NodeGroup.nodes.new('NodeGroupOutput')
group_outputs.location = (0,0)
NodeGroup.outputs.new('NodeSocketFloat','Density W_CloudTex')
NodeGroup.links.new(MathAdd.outputs[0],group_outputs.inputs['Density W_CloudTex'])
group_outputs.location = (0, 0)
NodeGroup.outputs.new('NodeSocketFloat', 'Density W_CloudTex')
NodeGroup.links.new(MathAdd.outputs[0], group_outputs.inputs['Density W_CloudTex'])
# Inputs
# Inputs
group_inputs = NodeGroup.nodes.new('NodeGroupInput')
group_inputs.location = (-1250,-300)
NodeGroup.inputs.new('NodeSocketFloat','Scale')
NodeGroup.inputs.new('NodeSocketFloat','Point Density In')
NodeGroup.links.new(group_inputs.outputs['Scale'],NoiseTex.inputs['Scale'])
NodeGroup.links.new(group_inputs.outputs['Point Density In'],MathDensityMultiply.inputs[1])
NodeGroup.links.new(group_inputs.outputs['Point Density In'],PointDensityRamp.inputs[0])
group_inputs.location = (-1250, -300)
NodeGroup.inputs.new('NodeSocketFloat', 'Scale')
NodeGroup.inputs.new('NodeSocketFloat', 'Point Density In')
NodeGroup.links.new(group_inputs.outputs['Scale'], NoiseTex.inputs['Scale'])
NodeGroup.links.new(group_inputs.outputs['Point Density In'], MathDensityMultiply.inputs[1])
NodeGroup.links.new(group_inputs.outputs['Point Density In'], PointDensityRamp.inputs[0])
return NodeGroup
# This routine takes an object and deletes all of the geometry in it
# and adds a bounding box to it.
# It will add or subtract the bound box size by the variable sizeDifference.
@ -202,13 +206,13 @@ def maxAndMinVerts(scene, object):
mesh = getMeshandPutinEditMode(scene, object)
verts = mesh.vertices
#Set the max and min verts to the first vertex on the list
# Set the max and min verts to the first vertex on the list
maxVert = [verts[0].co[0], verts[0].co[1], verts[0].co[2]]
minVert = [verts[0].co[0], verts[0].co[1], verts[0].co[2]]
#Create Max and Min Vertex array for the outer corners of the box
# Create Max and Min Vertex array for the outer corners of the box
for vert in verts:
#Max vertex
# Max vertex
if vert.co[0] > maxVert[0]:
maxVert[0] = vert.co[0]
if vert.co[1] > maxVert[1]:
@ -216,7 +220,7 @@ def maxAndMinVerts(scene, object):
if vert.co[2] > maxVert[2]:
maxVert[2] = vert.co[2]
#Min Vertex
# Min Vertex
if vert.co[0] < minVert[0]:
minVert[0] = vert.co[0]
if vert.co[1] < minVert[1]:
@ -227,35 +231,34 @@ def maxAndMinVerts(scene, object):
return [maxVert, minVert]
def makeObjectIntoBoundBox(scene, object, sizeDifference, takeFromObject):
def makeObjectIntoBoundBox(scene, objects, sizeDifference, takeFromObject):
# Let's find the max and min of the reference object,
# it can be the same as the destination object
[maxVert, minVert] = maxAndMinVerts(scene, takeFromObject)
#get objects mesh
mesh = getMeshandPutinEditMode(scene, object)
# get objects mesh
mesh = getMeshandPutinEditMode(scene, objects)
#Add the size difference to the max size of the box
# Add the size difference to the max size of the box
maxVert[0] = maxVert[0] + sizeDifference
maxVert[1] = maxVert[1] + sizeDifference
maxVert[2] = maxVert[2] + sizeDifference
#subtract the size difference to the min size of the box
# subtract the size difference to the min size of the box
minVert[0] = minVert[0] - sizeDifference
minVert[1] = minVert[1] - sizeDifference
minVert[2] = minVert[2] - sizeDifference
#Create arrays of verts and faces to be added to the mesh
# Create arrays of verts and faces to be added to the mesh
addVerts = []
#X high loop
# X high loop
addVerts.append([maxVert[0], maxVert[1], maxVert[2]])
addVerts.append([maxVert[0], maxVert[1], minVert[2]])
addVerts.append([maxVert[0], minVert[1], minVert[2]])
addVerts.append([maxVert[0], minVert[1], maxVert[2]])
#x low loop
# X low loop
addVerts.append([minVert[0], maxVert[1], maxVert[2]])
addVerts.append([minVert[0], maxVert[1], minVert[2]])
addVerts.append([minVert[0], minVert[1], minVert[2]])
@ -283,6 +286,7 @@ def makeObjectIntoBoundBox(scene, object, sizeDifference, takeFromObject):
# Add the mesh data.
mesh.from_pydata(addVerts, [], addFaces)
mesh.validate()
# Update the mesh
mesh.update()
@ -300,30 +304,25 @@ def applyScaleRotLoc(scene, obj):
def totallyDeleteObject(scene, obj):
scene.objects.unlink(obj)
bpy.data.objects.remove(obj)
bpy.data.objects.remove(obj, do_unlink=True)
def makeParent(parentobj, childobj, scene):
applyScaleRotLoc(scene, parentobj)
applyScaleRotLoc(scene, childobj)
childobj.parent = parentobj
def addNewObject(scene, name, copyobj):
# Create new mesh
mesh = bpy.data.meshes.new(name)
# Create a new object.
ob_new = bpy.data.objects.new(name, mesh)
# avoid creating not needed meshes pro forme
# Create a new object
tempme = copyobj.data
ob_new.data = tempme.copy()
ob_new_data = tempme.copy()
ob_new = bpy.data.objects.new(name, ob_new_data)
ob_new.scale = copyobj.scale
ob_new.location = copyobj.location
# Link new object to the given scene and select it.
# Link new object to the given scene and select it
scene.objects.link(ob_new)
ob_new.select = True
@ -333,23 +332,24 @@ def addNewObject(scene, name, copyobj):
def getpdensitytexture(object):
for mslot in object.material_slots:
mat = mslot.material
for tslot in mat.texture_slots:
if tslot != 'NoneType':
tex = tslot.texture
if tex.type == 'POINT_DENSITY':
if tex.point_density.point_source == 'PARTICLE_SYSTEM':
return tex
# Material slot can be empty
mat = getattr(mslot, "material", None)
if mat:
for tslot in mat.texture_slots:
if tslot != 'NoneType':
tex = tslot.texture
if tex.type == 'POINT_DENSITY':
if tex.point_density.point_source == 'PARTICLE_SYSTEM':
return tex
def removeParticleSystemFromObj(scene, object):
def removeParticleSystemFromObj(scene, obj):
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
# Select the object.
object.select = True
scene.objects.active = object
# Select the object
obj.select = True
scene.objects.active = obj
bpy.ops.object.particle_system_remove()
@ -358,15 +358,14 @@ def removeParticleSystemFromObj(scene, object):
def convertParticlesToMesh(scene, particlesobj, destobj, replacemesh):
# Select the Destination object.
# Select the Destination object
destobj.select = True
scene.objects.active = destobj
#Go to Edit Mode
# Go to Edit Mode
bpy.ops.object.mode_set(mode='EDIT', toggle=False)
#Delete everything in mesh if replace true
# Delete everything in mesh if replace is true
if replacemesh:
bpy.ops.mesh.select_all(action='SELECT')
bpy.ops.mesh.delete(type='VERT')
@ -379,13 +378,14 @@ def convertParticlesToMesh(scene, particlesobj, destobj, replacemesh):
for pTicle in listCloudParticles:
listMeshPnts.append(pTicle.location)
# Must be in object mode for from_pydata to work.
# Must be in object mode for from_pydata to work
bpy.ops.object.mode_set(mode='OBJECT')
# Add in the mesh data.
# Add in the mesh data
meshPnts.from_pydata(listMeshPnts, [], [])
# Update the mesh.
# Update and Validate the mesh
meshPnts.validate()
meshPnts.update()
@ -421,8 +421,10 @@ def getActionToDo(obj):
if not obj or obj.type != 'MESH':
return 'NOT_OBJ_DO_NOTHING'
elif obj is None:
return 'NO_SELECTION_DO_NOTHING'
elif "CloudMember" in obj:
if obj["CloudMember"] is not None:
if obj["CloudMember"] == "MainObj":
@ -431,8 +433,10 @@ def getActionToDo(obj):
return 'CLOUD_CONVERT_TO_MESH'
else:
return 'CLOUD_DO_NOTHING'
elif obj.type == 'MESH':
return 'GENERATE'
else:
return 'DO_NOTHING'
@ -473,35 +477,32 @@ class VIEW3D_PT_tools_cloud(Panel):
col.prop(context.scene, "cloud_type")
col.prop(context.scene, "cloudsmoothing")
else:
col.label(text="Select one or more")
col.label(text="objects to generate")
col.label(text="a cloud")
col.label(text="Select one or more", icon="INFO")
col.label(text="objects to generate", icon="BLANK1")
col.label(text="a cloud", icon="BLANK1")
class GenerateCloud(Operator):
"""Create a Cloud,Undo Cloud, or convert to Mesh Cloud depending on selection"""
bl_idname = "cloud.generate_cloud"
bl_label = "Generate Cloud"
bl_register = True
bl_undo = True
bl_description = ("Create a Cloud, Undo a Cloud, or convert to "
"Mesh Cloud depending on selection\n"
"Needs an Active Mesh Object")
bl_options = {"REGISTER", "UNDO"}
@classmethod
def poll(cls, context):
if not context.active_object:
return False
else:
return (context.active_object.type == 'MESH')
obj = context.active_object
return (obj and obj.type == 'MESH')
def execute(self, context):
# Prevent unsupported Execution in Local View modes
space_data = bpy.context.space_data
if True in space_data.layers_local_view:
self.report({'INFO'}, 'Global Perspective modes only unable to continue.')
return {'FINISHED'}
# Make variable that is the current .blend file main data blocks
blend_data = context.blend_data
self.report({'INFO'},
"Works with Global Perspective modes only. Operation Cancelled")
return {'CANCELLLED'}
# Make variable that is the active object selected by user
active_object = context.active_object
@ -527,8 +528,6 @@ class GenerateCloud(Operator):
scattering = 2.5
pointDensityRadiusFactor = .37
densityScale = 1.5
noiseScale = 1
# What should we do?
WhatToDo = getActionToDo(active_object)
@ -540,9 +539,9 @@ class GenerateCloud(Operator):
bpy.ops.object.hide_view_clear()
cloudMembers = active_object.children
createdObjects = []
definitionObjects = []
for member in cloudMembers:
applyScaleRotLoc(scene, member)
if member["CloudMember"] == "CreatedObj":
@ -562,19 +561,18 @@ class GenerateCloud(Operator):
totallyDeleteObject(scene, mainObj)
# Select all of the left over boxes so people can immediately
# press generate again if they want.
# press generate again if they want
for eachMember in definitionObjects:
eachMember.draw_type = 'SOLID'
eachMember.select = True
eachMember.hide_render = False
elif WhatToDo == 'CLOUD_CONVERT_TO_MESH':
cloudParticles = active_object.particle_systems.active
bounds = active_object.parent
###############Create CloudPnts for putting points in#########
# Create CloudPnts for putting points in #
# Create a new object cloudPnts
cloudPnts = addNewObject(scene, "CloudPoints", bounds)
cloudPnts["CloudMember"] = "CreatedObj"
@ -582,38 +580,37 @@ class GenerateCloud(Operator):
cloudPnts.hide_render = True
makeParent(bounds, cloudPnts, scene)
convertParticlesToMesh(scene, cloudParticles, cloudPnts, True)
removeParticleSystemFromObj(scene, active_object)
pDensity = getpdensitytexture(bounds)
pDensity.point_density.point_source = 'OBJECT'
pDensity.point_density.object = cloudPnts
#Let's resize the bound box to be more accurate.
# Let's resize the bound box to be more accurate
how_much_bigger = pDensity.point_density.radius
makeObjectIntoBoundBox(scene, bounds, how_much_bigger, cloudPnts)
else:
# Generate Cloud
###############Create Combined Object bounds##################
# Make a list of all Selected objects.
# Create Combined Object bounds #
# Make a list of all Selected objects
selectedObjects = bpy.context.selected_objects
if not selectedObjects:
selectedObjects = [bpy.context.active_object]
# Create a new object bounds
bounds = addNewObject(scene,
"CloudBounds",
selectedObjects[0])
bounds = addNewObject(
scene, "CloudBounds",
selectedObjects[0]
)
bounds.draw_type = 'BOUNDS'
bounds.hide_render = False
# Just add a Definition Property designating this
# as the blend_data object.
# as the blend_data object
bounds["CloudMember"] = "MainObj"
# Since we used iteration 0 to copy with object we
@ -621,7 +618,7 @@ class GenerateCloud(Operator):
firstObject = selectedObjects[0]
del selectedObjects[0]
# Apply location Rotation and Scale to all objects involved.
# Apply location Rotation and Scale to all objects involved
applyScaleRotLoc(scene, bounds)
for each in selectedObjects:
applyScaleRotLoc(scene, each)
@ -629,23 +626,23 @@ class GenerateCloud(Operator):
# Let's combine all of them together.
combineObjects(scene, bounds, selectedObjects)
# Let's add some property info to the objects.
# Let's add some property info to the objects
for selObj in selectedObjects:
selObj["CloudMember"] = "DefinitioinObj"
selObj.name = "DefinitioinObj"
selObj["CloudMember"] = "DefinitionObj"
selObj.name = "DefinitionObj"
selObj.draw_type = 'WIRE'
selObj.hide_render = True
selObj.hide = True
makeParent(bounds, selObj, scene)
# Do the same to the 1. object since it is no longer in list.
firstObject["CloudMember"] = "DefinitioinObj"
firstObject.name = "DefinitioinObj"
firstObject["CloudMember"] = "DefinitionObj"
firstObject.name = "DefinitionObj"
firstObject.draw_type = 'WIRE'
firstObject.hide_render = True
makeParent(bounds, firstObject, scene)
###############Create Cloud for putting Cloud Mesh############
# Create Cloud for putting Cloud Mesh #
# Create a new object cloud.
cloud = addNewObject(scene, "CloudMesh", bounds)
cloud["CloudMember"] = "CreatedObj"
@ -657,24 +654,23 @@ class GenerateCloud(Operator):
bpy.ops.object.editmode_toggle()
bpy.ops.mesh.select_all(action='SELECT')
#Don't subdivide object or smooth if smoothing box not checked.
# Don't subdivide object or smooth if smoothing box not checked.
if scene.cloudsmoothing:
bpy.ops.mesh.subdivide(number_cuts=2, fractal=0, smoothness=1)
# bpy.ops.object.transform_apply(location=True)
bpy.ops.mesh.vertices_smooth(repeat=20)
bpy.ops.mesh.tris_convert_to_quads()
bpy.ops.mesh.faces_shade_smooth()
bpy.ops.object.editmode_toggle()
###############Create Particles in cloud obj##################
# Create Particles in cloud obj #
# Set time to 0.
# Set time to 0
scene.frame_current = 0
# Add a new particle system.
# Add a new particle system
bpy.ops.object.particle_system_add()
#Particle settings setting it up!
# Particle settings setting it up!
cloudParticles = cloud.particle_systems.active
cloudParticles.name = "CloudParticles"
cloudParticles.settings.frame_start = 0
@ -687,11 +683,11 @@ class GenerateCloud(Operator):
cloudParticles.settings.physics_type = 'NEWTON'
cloudParticles.settings.normal_factor = 0
#Gravity does not effect the particle system
# Gravity does not affect the particle system
eWeights = cloudParticles.settings.effector_weights
eWeights.gravity = 0
####################Create Volume Material####################
# Create Volume Material #
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
@ -699,23 +695,23 @@ class GenerateCloud(Operator):
bounds.select = True
scene.objects.active = bounds
# Turn bounds object into a box. Use itself as a reference.
# Turn bounds object into a box. Use itself as a reference
makeObjectIntoBoundBox(scene, bounds, 1.0, bounds)
# Delete all material slots in bounds object.
# Delete all material slots in bounds object
for i in range(len(bounds.material_slots)):
bounds.active_material_index = i - 1
bpy.ops.object.material_slot_remove()
# Add a new material.
cloudMaterial = blend_data.materials.new("CloudMaterial")
# Add a new material
cloudMaterial = bpy.data.materials.new("CloudMaterial")
bpy.ops.object.material_slot_add()
bounds.material_slots[0].material = cloudMaterial
# Set time
scene.frame_current = 1
#Set Up Material for Blender Internal
# Set Up Material for Blender Internal
if bpy.context.scene.render.engine == 'BLENDER_RENDER':
# Set Up the Cloud Material
cloudMaterial.name = "CloudMaterial"
@ -731,7 +727,7 @@ class GenerateCloud(Operator):
# Add a texture
# vMaterialTextureSlots = cloudMaterial.texture_slots # UNUSED
cloudtex = blend_data.textures.new("CloudTex", type='CLOUDS')
cloudtex = bpy.data.textures.new("CloudTex", type='CLOUDS')
cloudtex.noise_type = 'HARD_NOISE'
cloudtex.noise_scale = 2
mtex = cloudMaterial.texture_slots.add()
@ -743,7 +739,7 @@ class GenerateCloud(Operator):
scene.frame_current = 1
# Add a Point Density texture
pDensity = blend_data.textures.new("CloudPointDensity", 'POINT_DENSITY')
pDensity = bpy.data.textures.new("CloudPointDensity", 'POINT_DENSITY')
mtex = cloudMaterial.texture_slots.add()
mtex.texture = pDensity
@ -759,21 +755,20 @@ class GenerateCloud(Operator):
pDensity.use_color_ramp = True
pRamp = pDensity.color_ramp
#pRamp.use_interpolation = 'LINEAR'
# pRamp.use_interpolation = 'LINEAR'
pRampElements = pRamp.elements
#pRampElements[1].position = .9
#pRampElements[1].color = 0.18, 0.18, 0.18, 0.8
# pRampElements[1].position = .9
# pRampElements[1].color = 0.18, 0.18, 0.18, 0.8
bpy.ops.texture.slot_move(type='UP')
#Set Up Material for Cycles Engine
# Set Up Material for Cycles Engine
elif bpy.context.scene.render.engine == 'CYCLES':
VolumePropertiesGroup = CreateNodeGroup('CloudGen_VolumeProperties')
CloudTexPropertiesGroup = CreateNodeGroup('CloudGen_TextureProperties')
cloudMaterial.name = "CloudMaterial"
# Add a texture
# vMaterialTextureSlots = cloudMaterial.texture_slots # UNUSED
cloudtex = blend_data.textures.new("CloudTex", type='CLOUDS')
cloudtex = bpy.data.textures.new("CloudTex", type='CLOUDS')
cloudtex.noise_type = 'HARD_NOISE'
cloudtex.noise_scale = 2
@ -783,46 +778,30 @@ class GenerateCloud(Operator):
cloudMatNodes.clear()
outputNode = cloudMatNodes.new('ShaderNodeOutputMaterial')
outputNode.location = (200,300)
outputNode.location = (200, 300)
tranparentNode = cloudMatNodes.new('ShaderNodeBsdfTransparent')
tranparentNode.location = (0,300)
tranparentNode.location = (0, 300)
volumeGroup = cloudMatNodes.new("ShaderNodeGroup")
volumeGroup.node_tree = VolumePropertiesGroup
volumeGroup.location = (0,150)
volumeGroup.location = (0, 150)
cloudTexGroup = cloudMatNodes.new("ShaderNodeGroup")
cloudTexGroup.node_tree = CloudTexPropertiesGroup
cloudTexGroup.location = (-200,150)
cloudTexGroup.location = (-200, 150)
PointDensityNode = cloudMatNodes.new("ShaderNodeTexPointDensity")
PointDensityNode.location = (-400,150)
PointDensityNode.location = (-400, 150)
PointDensityNode.resolution = 100
PointDensityNode.space = 'OBJECT'
PointDensityNode.interpolation = 'Linear'
# PointDensityNode.color_source = 'CONSTANT'
# PointDensityNode.color_source = 'CONSTANT'
cloudTree.links.new(outputNode.inputs[0],tranparentNode.outputs[0])
cloudTree.links.new(outputNode.inputs[1],volumeGroup.outputs[0])
cloudTree.links.new(volumeGroup.inputs[0],cloudTexGroup.outputs[0])
cloudTree.links.new(cloudTexGroup.inputs[1],PointDensityNode.outputs[1])
#PointDensityNode.point_source = 'PARTICLE_SYSTEM'
#VolumePropsNode = cloudMatNodes.new(VolumePropertiesGroup)
#VolumePropsNode.location = (-200,0)
#tree = bpy.data.materials['CloudMaterial'].node_tree
#group = bpy.data.groups.data.node_groups['CloudGen_VolumeProperties']
#newgroup = tree.nodes.new("ShaderNodeGroup")
#newgroup.node_tree = bpy.data.node_groups['CloudGen_VolumeProperties']
#ramp = tree.nodes.new('ShaderNodeValToRGB')
#cramp = ramp.color_ramp
#mport bpy
#obj = bpy.data.objects['CloudBounds']
#(obj.dimensions[0] * obj.dimensions[1] * obj.dimensions[2])
cloudTree.links.new(outputNode.inputs[0], tranparentNode.outputs[0])
cloudTree.links.new(outputNode.inputs[1], volumeGroup.outputs[0])
cloudTree.links.new(volumeGroup.inputs[0], cloudTexGroup.outputs[0])
cloudTree.links.new(cloudTexGroup.inputs[1], PointDensityNode.outputs[1])
# Estimate the number of particles for the size of bounds.
volumeBoundBox = (bounds.dimensions[0] * bounds.dimensions[1] * bounds.dimensions[2])
@ -831,10 +810,8 @@ class GenerateCloud(Operator):
numParticles = maxNumOfPoints
if numParticles < 10000:
numParticles = int(numParticles + 15 * volumeBoundBox)
print(numParticles)
# Set the number of particles according to the volume
# of bounds.
# Set the number of particles according to the volume of bounds
cloudParticles.settings.count = numParticles
PDensityRadius = (.00013764 * volumeBoundBox + .3989) * pointDensityRadiusFactor
@ -855,7 +832,7 @@ class GenerateCloud(Operator):
scene.frame_current = 1
if not scene.cloudparticles:
###############Create CloudPnts for putting points in#########
# Create CloudPnts for putting points in #
# Create a new object cloudPnts
cloudPnts = addNewObject(scene, "CloudPoints", bounds)
cloudPnts["CloudMember"] = "CreatedObj"
@ -863,7 +840,6 @@ class GenerateCloud(Operator):
cloudPnts.hide_render = True
makeParent(bounds, cloudPnts, scene)
convertParticlesToMesh(scene, cloudParticles, cloudPnts, True)
# Add a modifier.
@ -890,7 +866,6 @@ class GenerateCloud(Operator):
removeParticleSystemFromObj(scene, cloud)
else:
if bpy.context.scene.render.engine == 'BLENDER_RENDER':
pDensity.point_density.point_source = 'PARTICLE_SYSTEM'
pDensity.point_density.object = cloud
@ -902,7 +877,6 @@ class GenerateCloud(Operator):
if bpy.context.scene.render.engine == 'BLENDER_RENDER':
if scene.cloud_type == '1': # Cumulous
print("Cumulous")
mVolume.density_scale = 2.22
pDensity.point_density.turbulence_depth = 10
pDensity.point_density.turbulence_strength = 6.3
@ -911,13 +885,11 @@ class GenerateCloud(Operator):
pDensity.point_density.radius = pDensity.point_density.radius + 0.1
elif scene.cloud_type == '2': # Cirrus
print("Cirrus")
pDensity.point_density.turbulence_strength = 22
mVolume.transmission_color = 3.5, 3.5, 3.5
mVolume.scattering = 0.13
elif scene.cloud_type == '3': # Explosion
print("Explosion")
mVolume.emission = 1.42
mtex.use_rgb_to_intensity = False
pRampElements[0].position = 0.825
@ -932,30 +904,20 @@ class GenerateCloud(Operator):
pRampElement3 = pRampElements.new(0.669)
pRampElement3.color = 0.0, 0.0, 0.040, 1
elif bpy.context.scene.render.engine == 'CYCLES':
volumeGroup.inputs['Absorption Multiply'].default_value = 50
volumeGroup.inputs['Absorption Color'].default_value = (1.0, 1.0, 1.0, 1.0)
volumeGroup.inputs['Scatter Multiply'].default_value = 30
volumeGroup.inputs['Scatter Multiply'].default_value = 30
volumeGroup.inputs['Scatter Color'].default_value = (.58, .58, .58, 1.0)
volumeGroup.inputs['Emission Amount'].default_value = .1
volumeGroup.inputs['Cloud Brightness'].default_value = 1.3
noiseCloudScale = volumeBoundBox*(-.001973)+5.1216
volumeGroup.inputs['Cloud Brightness'].default_value = 1.3
noiseCloudScale = volumeBoundBox * (-.001973) + 5.1216
if noiseCloudScale < .05:
noiseCloudScale = .05
cloudTexGroup.inputs['Scale'].default_value = noiseCloudScale
cloudTexGroup.inputs['Scale'].default_value = noiseCloudScale
if scene.cloud_type == '1': # Cumulous
print("Cumulous")
elif scene.cloud_type == '2': # Cirrus
print("Cirrus")
elif scene.cloud_type == '3': # Explosion
print("Explosion")
#to cloud to view in cycles in render mode we need to hide geometry meshes...
# to cloud to view in cycles in render mode we need to hide geometry meshes...
firstObject.hide = True
cloud.hide = True
@ -963,15 +925,22 @@ class GenerateCloud(Operator):
bounds.select = True
scene.objects.active = bounds
#Let's resize the bound box to be more accurate.
# Let's resize the bound box to be more accurate.
how_much_bigger = PDensityRadius + 0.1
#If it's a particle cloud use cloud mesh if otherwise use point mesh
# If it's a particle cloud use cloud mesh if otherwise use point mesh
if not scene.cloudparticles:
makeObjectIntoBoundBox(scene, bounds, how_much_bigger, cloudPnts)
else:
makeObjectIntoBoundBox(scene, bounds, how_much_bigger, cloud)
cloud_string = "Cumulous" if scene.cloud_type == '1' else "Cirrus" if \
scene.cloud_type == '2' else "Stratus" if \
scene.cloud_type == '0' else "Explosion"
self.report({'INFO'},
"Created the cloud of type {}".format(cloud_string))
return {'FINISHED'}
@ -979,30 +948,32 @@ def register():
bpy.utils.register_module(__name__)
bpy.types.Scene.cloudparticles = BoolProperty(
name="Particles",
description="Generate Cloud as Particle System",
default=False)
name="Particles",
description="Generate Cloud as Particle System",
default=False
)
bpy.types.Scene.cloudsmoothing = BoolProperty(
name="Smoothing",
description="Smooth Resultant Geometry From Gen Cloud Operation",
default=True)
name="Smoothing",
description="Smooth Resultant Geometry From Gen Cloud Operation",
default=True
)
bpy.types.Scene.cloud_type = EnumProperty(
name="Type",
description="Select the type of cloud to create with material settings",
items=[("0", "Stratus", "Generate Stratus_foggy Cloud"),
("1", "Cumulous", "Generate Cumulous_puffy Cloud"),
("2", "Cirrus", "Generate Cirrus_wispy Cloud"),
("3", "Explosion", "Generate Explosion"),
],
default='0')
name="Type",
description="Select the type of cloud to create with material settings",
items=[("0", "Stratus", "Generate Stratus (foggy) Cloud"),
("1", "Cumulous", "Generate Cumulous (puffy) Cloud"),
("2", "Cirrus", "Generate Cirrus (wispy) Cloud"),
("3", "Explosion", "Generate Explosion"),
],
default='0'
)
def unregister():
bpy.utils.unregister_module(__name__)
del bpy.types.Scene.cloudparticles
del bpy.types.Scene.cloudsmoothing
del bpy.types.Scene.cloud_type