DRW: Add glsl math libraries

Copied from eevee bsdf_common_lib.glsl
This commit is contained in:
Clément Foucault 2020-07-15 16:38:44 +02:00
parent 2c1edcf3ef
commit cd8f3c9ee7
2 changed files with 249 additions and 0 deletions

View File

@ -0,0 +1,119 @@
#pragma BLENDER_REQUIRE(common_math_lib.glsl)
/* ---------------------------------------------------------------------- */
/** \name Math intersection & projection functions.
* \{ */
float point_plane_projection_dist(vec3 lineorigin, vec3 planeorigin, vec3 planenormal)
{
return dot(planenormal, planeorigin - lineorigin);
}
float line_plane_intersect_dist(vec3 lineorigin,
vec3 linedirection,
vec3 planeorigin,
vec3 planenormal)
{
return dot(planenormal, planeorigin - lineorigin) / dot(planenormal, linedirection);
}
float line_plane_intersect_dist(vec3 lineorigin, vec3 linedirection, vec4 plane)
{
vec3 plane_co = plane.xyz * (-plane.w / len_squared(plane.xyz));
vec3 h = lineorigin - plane_co;
return -dot(plane.xyz, h) / dot(plane.xyz, linedirection);
}
vec3 line_plane_intersect(vec3 lineorigin, vec3 linedirection, vec3 planeorigin, vec3 planenormal)
{
float dist = line_plane_intersect_dist(lineorigin, linedirection, planeorigin, planenormal);
return lineorigin + linedirection * dist;
}
vec3 line_plane_intersect(vec3 lineorigin, vec3 linedirection, vec4 plane)
{
float dist = line_plane_intersect_dist(lineorigin, linedirection, plane);
return lineorigin + linedirection * dist;
}
float line_aligned_plane_intersect_dist(vec3 lineorigin, vec3 linedirection, vec3 planeorigin)
{
/* aligned plane normal */
vec3 L = planeorigin - lineorigin;
float diskdist = length(L);
vec3 planenormal = -normalize(L);
return -diskdist / dot(planenormal, linedirection);
}
vec3 line_aligned_plane_intersect(vec3 lineorigin, vec3 linedirection, vec3 planeorigin)
{
float dist = line_aligned_plane_intersect_dist(lineorigin, linedirection, planeorigin);
if (dist < 0) {
/* if intersection is behind we fake the intersection to be
* really far and (hopefully) not inside the radius of interest */
dist = 1e16;
}
return lineorigin + linedirection * dist;
}
float line_unit_sphere_intersect_dist(vec3 lineorigin, vec3 linedirection)
{
float a = dot(linedirection, linedirection);
float b = dot(linedirection, lineorigin);
float c = dot(lineorigin, lineorigin) - 1;
float dist = 1e15;
float determinant = b * b - a * c;
if (determinant >= 0) {
dist = (sqrt(determinant) - b) / a;
}
return dist;
}
float line_unit_box_intersect_dist(vec3 lineorigin, vec3 linedirection)
{
/* https://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
*/
vec3 firstplane = (vec3(1.0) - lineorigin) / linedirection;
vec3 secondplane = (vec3(-1.0) - lineorigin) / linedirection;
vec3 furthestplane = max(firstplane, secondplane);
return min_v3(furthestplane);
}
/** \} */
/* ---------------------------------------------------------------------- */
/** \name Other useful functions.
* \{ */
void make_orthonormal_basis(vec3 N, out vec3 T, out vec3 B)
{
vec3 UpVector = abs(N.z) < 0.99999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
T = normalize(cross(UpVector, N));
B = cross(N, T);
}
/* ---- Encode / Decode Normal buffer data ---- */
/* From http://aras-p.info/texts/CompactNormalStorage.html
* Using Method #4: Spheremap Transform */
vec2 normal_encode(vec3 n, vec3 view)
{
float p = sqrt(n.z * 8.0 + 8.0);
return n.xy / p + 0.5;
}
vec3 normal_decode(vec2 enc, vec3 view)
{
vec2 fenc = enc * 4.0 - 2.0;
float f = dot(fenc, fenc);
float g = sqrt(1.0 - f / 4.0);
vec3 n;
n.xy = fenc * g;
n.z = 1 - f / 2;
return n;
}
/** \} */

View File

@ -0,0 +1,130 @@
/* ---------------------------------------------------------------------- */
/** \name Common Math Utilities
* \{ */
#define M_PI 3.14159265358979323846 /* pi */
#define M_2PI 6.28318530717958647692 /* 2*pi */
#define M_PI_2 1.57079632679489661923 /* pi/2 */
#define M_1_PI 0.318309886183790671538 /* 1/pi */
#define M_1_2PI 0.159154943091895335768 /* 1/(2*pi) */
#define M_1_PI2 0.101321183642337771443 /* 1/(pi^2) */
#define FLT_MAX 3.402823e+38
vec3 mul(mat3 m, vec3 v)
{
return m * v;
}
mat3 mul(mat3 m1, mat3 m2)
{
return m1 * m2;
}
vec3 transform_direction(mat4 m, vec3 v)
{
return mat3(m) * v;
}
vec3 transform_point(mat4 m, vec3 v)
{
return (m * vec4(v, 1.0)).xyz;
}
vec3 project_point(mat4 m, vec3 v)
{
vec4 tmp = m * vec4(v, 1.0);
return tmp.xyz / tmp.w;
}
#define min3(a, b, c) min(a, min(b, c))
#define min4(a, b, c, d) min(a, min3(b, c, d))
#define min5(a, b, c, d, e) min(a, min4(b, c, d, e))
#define min6(a, b, c, d, e, f) min(a, min5(b, c, d, e, f))
#define min7(a, b, c, d, e, f, g) min(a, min6(b, c, d, e, f, g))
#define min8(a, b, c, d, e, f, g, h) min(a, min7(b, c, d, e, f, g, h))
#define min9(a, b, c, d, e, f, g, h, i) min(a, min8(b, c, d, e, f, g, h, i))
#define max3(a, b, c) max(a, max(b, c))
#define max4(a, b, c, d) max(a, max3(b, c, d))
#define max5(a, b, c, d, e) max(a, max4(b, c, d, e))
#define max6(a, b, c, d, e, f) max(a, max5(b, c, d, e, f))
#define max7(a, b, c, d, e, f, g) max(a, max6(b, c, d, e, f, g))
#define max8(a, b, c, d, e, f, g, h) max(a, max7(b, c, d, e, f, g, h))
#define max9(a, b, c, d, e, f, g, h, i) max(a, max8(b, c, d, e, f, g, h, i))
#define avg3(a, b, c) (a + b + c) * (1.0 / 3.0)
#define avg4(a, b, c, d) (a + b + c + d) * (1.0 / 4.0)
#define avg5(a, b, c, d, e) (a + b + c + d + e) * (1.0 / 5.0)
#define avg6(a, b, c, d, e, f) (a + b + c + d + e + f) * (1.0 / 6.0)
#define avg7(a, b, c, d, e, f, g) (a + b + c + d + e + f + g) * (1.0 / 7.0)
#define avg8(a, b, c, d, e, f, g, h) (a + b + c + d + e + f + g + h) * (1.0 / 8.0)
#define avg9(a, b, c, d, e, f, g, h, i) (a + b + c + d + e + f + g + h + i) * (1.0 / 9.0)
/* clang-format off */
float min_v2(vec2 v) { return min(v.x, v.y); }
float min_v3(vec3 v) { return min(v.x, min(v.y, v.z)); }
float min_v4(vec4 v) { return min(min(v.x, v.y), min(v.z, v.w)); }
float max_v2(vec2 v) { return max(v.x, v.y); }
float max_v3(vec3 v) { return max(v.x, max(v.y, v.z)); }
float max_v4(vec4 v) { return max(max(v.x, v.y), max(v.z, v.w)); }
float sum(vec2 v) { return dot(vec2(1.0), v); }
float sum(vec3 v) { return dot(vec3(1.0), v); }
float sum(vec4 v) { return dot(vec4(1.0), v); }
float avg(vec2 v) { return dot(vec2(1.0 / 2.0), v); }
float avg(vec3 v) { return dot(vec3(1.0 / 3.0), v); }
float avg(vec4 v) { return dot(vec4(1.0 / 4.0), v); }
/* clang-format on */
#define saturate(a) clamp(a, 0.0, 1.0)
float distance_squared(vec2 a, vec2 b)
{
a -= b;
return dot(a, a);
}
float distance_squared(vec3 a, vec3 b)
{
a -= b;
return dot(a, a);
}
float len_squared(vec3 a)
{
return dot(a, a);
}
/** \} */
/* ---------------------------------------------------------------------- */
/** \name Fast Math
* \{ */
/* [Drobot2014a] Low Level Optimizations for GCN */
float fast_sqrt(float v)
{
return intBitsToFloat(0x1fbd1df5 + (floatBitsToInt(v) >> 1));
}
vec2 fast_sqrt(vec2 v)
{
return intBitsToFloat(0x1fbd1df5 + (floatBitsToInt(v) >> 1));
}
/* [Eberly2014] GPGPU Programming for Games and Science */
float fast_acos(float v)
{
float res = -0.156583 * abs(v) + M_PI_2;
res *= fast_sqrt(1.0 - abs(v));
return (v >= 0) ? res : M_PI - res;
}
vec2 fast_acos(vec2 v)
{
vec2 res = -0.156583 * abs(v) + M_PI_2;
res *= fast_sqrt(1.0 - abs(v));
v.x = (v.x >= 0) ? res.x : M_PI - res.x;
v.y = (v.y >= 0) ? res.y : M_PI - res.y;
return v;
}
/** \} */