Code cleanup: BLI_md5.c was... not nice.

This commit is contained in:
Bastien Montagne 2014-06-20 16:06:12 +02:00
parent 8937feadae
commit fb7c71383b
1 changed files with 327 additions and 353 deletions

View File

@ -1,417 +1,391 @@
/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* ***** END GPL LICENSE BLOCK *****
*
* Copyright (C) 1995 Software Foundation, Inc.
*
* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>.
*/
/** \file blender/blenlib/intern/md5.c
* \ingroup imbuf
* \ingroup bli
*
* Functions to compute MD5 message digest of files or memory blocks
* according to the definition of MD5 in RFC 1321 from April 1992.
*/
#include "BLI_md5.h" /* own include */
/* md5.c - Functions to compute MD5 message digest of files or memory blocks
according to the definition of MD5 in RFC 1321 from April 1992.
Copyright (C) 1995 Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>. */
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <sys/types.h>
#if defined HAVE_LIMITS_H || defined _LIBC
# include <limits.h>
# include <limits.h>
#endif
/* The following contortions are an attempt to use the C preprocessor
to determine an unsigned integral type that is 32 bits wide. An
alternative approach is to use autoconf's AC_CHECK_SIZEOF macro, but
doing that would require that the configure script compile and *run*
the resulting executable. Locally running cross-compiled executables
is usually not possible. */
/* The following contortions are an attempt to use the C preprocessor to determine an unsigned integral type
* that is 32 bits wide. An alternative approach is to use autoconf's AC_CHECK_SIZEOF macro, but doing that
* would require that the configure script compile and *run* the resulting executable.
* Locally running cross-compiled executables is usually not possible.
*/
#if defined __STDC__ && __STDC__
# define UINT_MAX_32_BITS 4294967295U
# define UINT_MAX_32_BITS 4294967295U
#else
# define UINT_MAX_32_BITS 0xFFFFFFFF
# define UINT_MAX_32_BITS 0xFFFFFFFF
#endif
/* If UINT_MAX isn't defined, assume it's a 32-bit type.
This should be valid for all systems GNU cares about because
that doesn't include 16-bit systems, and only modern systems
(that certainly have <limits.h>) have 64+-bit integral types. */
* This should be valid for all systems GNU cares about because that doesn't include 16-bit systems,
* and only modern systems (that certainly have <limits.h>) have 64+-bit integral types.
*/
#ifndef UINT_MAX
# define UINT_MAX UINT_MAX_32_BITS
# define UINT_MAX UINT_MAX_32_BITS
#endif
#if UINT_MAX == UINT_MAX_32_BITS
typedef unsigned int md5_uint32;
typedef unsigned int md5_uint32;
#else
# if USHRT_MAX == UINT_MAX_32_BITS
typedef unsigned short md5_uint32;
# else
# if ULONG_MAX == UINT_MAX_32_BITS
typedef unsigned long md5_uint32;
# if USHRT_MAX == UINT_MAX_32_BITS
typedef unsigned short md5_uint32;
# else
/* The following line is intended to evoke an error.
Using #error is not portable enough. */
"Cannot determine unsigned 32-bit data type."
# if ULONG_MAX == UINT_MAX_32_BITS
typedef unsigned long md5_uint32;
# else
/* The following line is intended to evoke an error. Using #error is not portable enough. */
"Cannot determine unsigned 32-bit data type."
# endif
# endif
# endif
#endif
/* Structure to save state of computation between the single steps. */
/* Following code is low level, upon which are built up the functions 'md5_stream' and 'md5_buffer'. */
/* Structure to save state of computation between the single steps. */
struct md5_ctx
{
md5_uint32 A;
md5_uint32 B;
md5_uint32 C;
md5_uint32 D;
md5_uint32 A;
md5_uint32 B;
md5_uint32 C;
md5_uint32 D;
};
/*
* The following three functions are build up the low level used in
* the functions `md5_stream' and `md5_buffer'.
*/
/* Initialize structure containing state of computation.
(RFC 1321, 3.3: Step 3) */
static void md5_init_ctx(struct md5_ctx *ctx);
/* Starting with the result of former calls of this function (or the
initialzation function update the context for the next LEN bytes
starting at BUFFER.
It is necessary that LEN is a multiple of 64!!! */
static void md5_process_block(const void *buffer, size_t len, struct md5_ctx *ctx);
/* Put result from CTX in first 16 bytes following RESBUF. The result is
always in little endian byte order, so that a byte-wise output yields
to the wanted ASCII representation of the message digest. */
static void *md5_read_ctx(const struct md5_ctx *ctx, void *resbuf);
#ifdef __BIG_ENDIAN__
# define SWAP(n) \
(((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
# define SWAP(n) (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
#else
# define SWAP(n) (n)
#endif
/* This array contains the bytes used to pad the buffer to the next 64-byte boundary. (RFC 1321, 3.1: Step 1) */
static const unsigned char fillbuf[64] = {0x80, 0 /* , 0, 0, ... */};
/* This array contains the bytes used to pad the buffer to the next
64-byte boundary. (RFC 1321, 3.1: Step 1) */
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
/* Initialize structure containing state of computation.
(RFC 1321, 3.3: Step 3) */
/** Initialize structure containing state of computation.
* (RFC 1321, 3.3: Step 3)
*/
static void md5_init_ctx(struct md5_ctx *ctx)
{
ctx->A = 0x67452301;
ctx->B = 0xefcdab89;
ctx->C = 0x98badcfe;
ctx->D = 0x10325476;
ctx->A = 0x67452301;
ctx->B = 0xefcdab89;
ctx->C = 0x98badcfe;
ctx->D = 0x10325476;
}
/* Put result from CTX in first 16 bytes following RESBUF. The result must
be in little endian byte order. */
static void *md5_read_ctx(const struct md5_ctx *ctx, void *resbuf)
/** Starting with the result of former calls of this function (or the initialization), this function updates
* the 'ctx' context for the next 'len' bytes starting at 'buffer'.
* It is necessary that 'len' is a multiple of 64!!!
*/
static void md5_process_block (const void *buffer, size_t len, struct md5_ctx *ctx)
{
((md5_uint32 *) resbuf)[0] = SWAP (ctx->A);
((md5_uint32 *) resbuf)[1] = SWAP (ctx->B);
((md5_uint32 *) resbuf)[2] = SWAP (ctx->C);
((md5_uint32 *) resbuf)[3] = SWAP (ctx->D);
return resbuf;
}
/* Compute MD5 message digest for bytes read from STREAM. The
resulting message digest number will be written into the 16 bytes
beginning at RESBLOCK. */
int md5_stream(FILE *stream, void *resblock)
{
/* Important: BLOCKSIZE must be a multiple of 64. */
#define BLOCKSIZE 4096
struct md5_ctx ctx;
md5_uint32 len[2];
char buffer[BLOCKSIZE + 72];
size_t pad, sum;
/* Initialize the computation context. */
md5_init_ctx (&ctx);
len[0] = 0;
len[1] = 0;
/* Iterate over full file contents. */
while (1)
{
/* We read the file in blocks of BLOCKSIZE bytes. One call of the
computation function processes the whole buffer so that with the
next round of the loop another block can be read. */
size_t n;
sum = 0;
/* Read block. Take care for partial reads. */
do
{
n = fread (buffer, 1, BLOCKSIZE - sum, stream);
sum += n;
}
while (sum < BLOCKSIZE && n != 0);
if (n == 0 && ferror (stream))
return 1;
/* RFC 1321 specifies the possible length of the file up to 2^64 bits.
Here we only compute the number of bytes. Do a double word
increment. */
len[0] += sum;
if (len[0] < sum)
++len[1];
/* If end of file is reached, end the loop. */
if (n == 0)
break;
/* Process buffer with BLOCKSIZE bytes. Note that
BLOCKSIZE % 64 == 0
*/
md5_process_block (buffer, BLOCKSIZE, &ctx);
}
/* We can copy 64 byte because the buffer is always big enough. FILLBUF
contains the needed bits. */
memcpy (&buffer[sum], fillbuf, 64);
/* Compute amount of padding bytes needed. Alignment is done to
(N + PAD) % 64 == 56
There is always at least one byte padded. I.e. even the alignment
is correctly aligned 64 padding bytes are added. */
pad = sum & 63;
pad = pad >= 56 ? 64 + 56 - pad : 56 - pad;
/* Put the 64-bit file length in *bits* at the end of the buffer. */
*(md5_uint32 *) &buffer[sum + pad] = SWAP (len[0] << 3);
*(md5_uint32 *) &buffer[sum + pad + 4] = SWAP ((len[1] << 3)
| (len[0] >> 29));
/* Process last bytes. */
md5_process_block (buffer, sum + pad + 8, &ctx);
/* Construct result in desired memory. */
md5_read_ctx (&ctx, resblock);
return 0;
}
/* Compute MD5 message digest for LEN bytes beginning at BUFFER. The
result is always in little endian byte order, so that a byte-wise
output yields to the wanted ASCII representation of the message
digest. */
void *md5_buffer(const char *buffer, size_t len, void *resblock)
{
struct md5_ctx ctx;
char restbuf[64 + 72];
size_t blocks = len & ~63;
size_t pad, rest;
/* Initialize the computation context. */
md5_init_ctx (&ctx);
/* Process whole buffer but last len % 64 bytes. */
md5_process_block (buffer, blocks, &ctx);
/* REST bytes are not processed yet. */
rest = len - blocks;
/* Copy to own buffer. */
memcpy (restbuf, &buffer[blocks], rest);
/* Append needed fill bytes at end of buffer. We can copy 64 byte
because the buffer is always big enough. */
memcpy (&restbuf[rest], fillbuf, 64);
/* PAD bytes are used for padding to correct alignment. Note that
always at least one byte is padded. */
pad = rest >= 56 ? 64 + 56 - rest : 56 - rest;
/* Put length of buffer in *bits* in last eight bytes. */
*(md5_uint32 *) &restbuf[rest + pad] = (md5_uint32) SWAP (len << 3);
*(md5_uint32 *) &restbuf[rest + pad + 4] = (md5_uint32) SWAP (len >> 29);
/* Process last bytes. */
md5_process_block (restbuf, rest + pad + 8, &ctx);
/* Put result in desired memory area. */
return md5_read_ctx (&ctx, resblock);
}
/* These are the four functions used in the four steps of the MD5 algorithm
and defined in the RFC 1321. The first function is a little bit optimized
(as found in Colin Plumbs public domain implementation). */
/* These are the four functions used in the four steps of the MD5 algorithm and defined in the RFC 1321.
* The first function is a little bit optimized (as found in Colin Plumbs public domain implementation).
*/
/* #define FF(b, c, d) ((b & c) | (~b & d)) */
#define FF(b, c, d) (d ^ (b & (c ^ d)))
#define FG(b, c, d) FF (d, b, c)
#define FH(b, c, d) (b ^ c ^ d)
#define FI(b, c, d) (c ^ (b | ~d))
/* Process LEN bytes of BUFFER, accumulating context into CTX.
It is assumed that LEN % 64 == 0. */
void md5_process_block (const void *buffer, size_t len, struct md5_ctx *ctx)
{
md5_uint32 correct_words[16];
const md5_uint32 *words = buffer;
size_t nwords = len / sizeof (md5_uint32);
const md5_uint32 *endp = words + nwords;
md5_uint32 A = ctx->A;
md5_uint32 B = ctx->B;
md5_uint32 C = ctx->C;
md5_uint32 D = ctx->D;
/* Process all bytes in the buffer with 64 bytes in each round of
the loop. */
while (words < endp)
{
md5_uint32 *cwp = correct_words;
md5_uint32 A_save = A;
md5_uint32 B_save = B;
md5_uint32 C_save = C;
md5_uint32 D_save = D;
/* First round: using the given function, the context and a constant
the next context is computed. Because the algorithms processing
unit is a 32-bit word and it is determined to work on words in
little endian byte order we perhaps have to change the byte order
before the computation. To reduce the work for the next steps
we store the swapped words in the array CORRECT_WORDS. */
#define OP(a, b, c, d, s, T) \
do \
{ \
a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T; \
++words; \
CYCLIC (a, s); \
a += b; \
} \
while (0)
/* It is unfortunate that C does not provide an operator for
cyclic rotation. Hope the C compiler is smart enough. */
/* It is unfortunate that C does not provide an operator for cyclic rotation. Hope the C compiler is smart enough. */
#define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
/* Before we start, one word to the strange constants.
They are defined in RFC 1321 as
md5_uint32 correct_words[16];
const md5_uint32 *words = buffer;
size_t nwords = len / sizeof(md5_uint32);
const md5_uint32 *endp = words + nwords;
md5_uint32 A = ctx->A;
md5_uint32 B = ctx->B;
md5_uint32 C = ctx->C;
md5_uint32 D = ctx->D;
T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
*/
/* Process all bytes in the buffer with 64 bytes in each round of the loop. */
while (words < endp) {
md5_uint32 *cwp = correct_words;
md5_uint32 A_save = A;
md5_uint32 B_save = B;
md5_uint32 C_save = C;
md5_uint32 D_save = D;
/* Round 1. */
OP (A, B, C, D, 7, 0xd76aa478);
OP (D, A, B, C, 12, 0xe8c7b756);
OP (C, D, A, B, 17, 0x242070db);
OP (B, C, D, A, 22, 0xc1bdceee);
OP (A, B, C, D, 7, 0xf57c0faf);
OP (D, A, B, C, 12, 0x4787c62a);
OP (C, D, A, B, 17, 0xa8304613);
OP (B, C, D, A, 22, 0xfd469501);
OP (A, B, C, D, 7, 0x698098d8);
OP (D, A, B, C, 12, 0x8b44f7af);
OP (C, D, A, B, 17, 0xffff5bb1);
OP (B, C, D, A, 22, 0x895cd7be);
OP (A, B, C, D, 7, 0x6b901122);
OP (D, A, B, C, 12, 0xfd987193);
OP (C, D, A, B, 17, 0xa679438e);
OP (B, C, D, A, 22, 0x49b40821);
/* First round: using the given function, the context and a constant the next context is computed.
* Because the algorithms processing unit is a 32-bit word and it is determined to work on words in
* little endian byte order we perhaps have to change the byte order before the computation.
* To reduce the work for the next steps we store the swapped words in the array CORRECT_WORDS.
*/
#define OP(a, b, c, d, s, T) \
a += FF(b, c, d) + (*cwp++ = SWAP(*words)) + T; \
++words; \
CYCLIC(a, s); \
a += b; \
(void)0
/* Before we start, one word to the strange constants. They are defined in RFC 1321 as:
* T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
*/
/* Round 1. */
OP(A, B, C, D, 7, 0xd76aa478);
OP(D, A, B, C, 12, 0xe8c7b756);
OP(C, D, A, B, 17, 0x242070db);
OP(B, C, D, A, 22, 0xc1bdceee);
OP(A, B, C, D, 7, 0xf57c0faf);
OP(D, A, B, C, 12, 0x4787c62a);
OP(C, D, A, B, 17, 0xa8304613);
OP(B, C, D, A, 22, 0xfd469501);
OP(A, B, C, D, 7, 0x698098d8);
OP(D, A, B, C, 12, 0x8b44f7af);
OP(C, D, A, B, 17, 0xffff5bb1);
OP(B, C, D, A, 22, 0x895cd7be);
OP(A, B, C, D, 7, 0x6b901122);
OP(D, A, B, C, 12, 0xfd987193);
OP(C, D, A, B, 17, 0xa679438e);
OP(B, C, D, A, 22, 0x49b40821);
/* For the second to fourth round we have the possibly swapped words
in CORRECT_WORDS. Redefine the macro to take an additional first
argument specifying the function to use. */
#undef OP
#define OP(f, a, b, c, d, k, s, T) \
do \
{ \
a += f (b, c, d) + correct_words[k] + T; \
CYCLIC (a, s); \
a += b; \
} \
while (0)
/* Round 2. */
OP (FG, A, B, C, D, 1, 5, 0xf61e2562);
OP (FG, D, A, B, C, 6, 9, 0xc040b340);
OP (FG, C, D, A, B, 11, 14, 0x265e5a51);
OP (FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
OP (FG, A, B, C, D, 5, 5, 0xd62f105d);
OP (FG, D, A, B, C, 10, 9, 0x02441453);
OP (FG, C, D, A, B, 15, 14, 0xd8a1e681);
OP (FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
OP (FG, A, B, C, D, 9, 5, 0x21e1cde6);
OP (FG, D, A, B, C, 14, 9, 0xc33707d6);
OP (FG, C, D, A, B, 3, 14, 0xf4d50d87);
OP (FG, B, C, D, A, 8, 20, 0x455a14ed);
OP (FG, A, B, C, D, 13, 5, 0xa9e3e905);
OP (FG, D, A, B, C, 2, 9, 0xfcefa3f8);
OP (FG, C, D, A, B, 7, 14, 0x676f02d9);
OP (FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
/* For the second to fourth round we have the possibly swapped words in CORRECT_WORDS.
* Redefine the macro to take an additional first argument specifying the function to use.
*/
#define OP(f, a, b, c, d, k, s, T) \
a += f(b, c, d) + correct_words[k] + T; \
CYCLIC(a, s); \
a += b; \
(void)0
/* Round 3. */
OP (FH, A, B, C, D, 5, 4, 0xfffa3942);
OP (FH, D, A, B, C, 8, 11, 0x8771f681);
OP (FH, C, D, A, B, 11, 16, 0x6d9d6122);
OP (FH, B, C, D, A, 14, 23, 0xfde5380c);
OP (FH, A, B, C, D, 1, 4, 0xa4beea44);
OP (FH, D, A, B, C, 4, 11, 0x4bdecfa9);
OP (FH, C, D, A, B, 7, 16, 0xf6bb4b60);
OP (FH, B, C, D, A, 10, 23, 0xbebfbc70);
OP (FH, A, B, C, D, 13, 4, 0x289b7ec6);
OP (FH, D, A, B, C, 0, 11, 0xeaa127fa);
OP (FH, C, D, A, B, 3, 16, 0xd4ef3085);
OP (FH, B, C, D, A, 6, 23, 0x04881d05);
OP (FH, A, B, C, D, 9, 4, 0xd9d4d039);
OP (FH, D, A, B, C, 12, 11, 0xe6db99e5);
OP (FH, C, D, A, B, 15, 16, 0x1fa27cf8);
OP (FH, B, C, D, A, 2, 23, 0xc4ac5665);
/* Round 2. */
OP(FG, A, B, C, D, 1, 5, 0xf61e2562);
OP(FG, D, A, B, C, 6, 9, 0xc040b340);
OP(FG, C, D, A, B, 11, 14, 0x265e5a51);
OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
OP(FG, A, B, C, D, 5, 5, 0xd62f105d);
OP(FG, D, A, B, C, 10, 9, 0x02441453);
OP(FG, C, D, A, B, 15, 14, 0xd8a1e681);
OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
OP(FG, A, B, C, D, 9, 5, 0x21e1cde6);
OP(FG, D, A, B, C, 14, 9, 0xc33707d6);
OP(FG, C, D, A, B, 3, 14, 0xf4d50d87);
OP(FG, B, C, D, A, 8, 20, 0x455a14ed);
OP(FG, A, B, C, D, 13, 5, 0xa9e3e905);
OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8);
OP(FG, C, D, A, B, 7, 14, 0x676f02d9);
OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
/* Round 4. */
OP (FI, A, B, C, D, 0, 6, 0xf4292244);
OP (FI, D, A, B, C, 7, 10, 0x432aff97);
OP (FI, C, D, A, B, 14, 15, 0xab9423a7);
OP (FI, B, C, D, A, 5, 21, 0xfc93a039);
OP (FI, A, B, C, D, 12, 6, 0x655b59c3);
OP (FI, D, A, B, C, 3, 10, 0x8f0ccc92);
OP (FI, C, D, A, B, 10, 15, 0xffeff47d);
OP (FI, B, C, D, A, 1, 21, 0x85845dd1);
OP (FI, A, B, C, D, 8, 6, 0x6fa87e4f);
OP (FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
OP (FI, C, D, A, B, 6, 15, 0xa3014314);
OP (FI, B, C, D, A, 13, 21, 0x4e0811a1);
OP (FI, A, B, C, D, 4, 6, 0xf7537e82);
OP (FI, D, A, B, C, 11, 10, 0xbd3af235);
OP (FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
OP (FI, B, C, D, A, 9, 21, 0xeb86d391);
/* Round 3. */
OP(FH, A, B, C, D, 5, 4, 0xfffa3942);
OP(FH, D, A, B, C, 8, 11, 0x8771f681);
OP(FH, C, D, A, B, 11, 16, 0x6d9d6122);
OP(FH, B, C, D, A, 14, 23, 0xfde5380c);
OP(FH, A, B, C, D, 1, 4, 0xa4beea44);
OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9);
OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60);
OP(FH, B, C, D, A, 10, 23, 0xbebfbc70);
OP(FH, A, B, C, D, 13, 4, 0x289b7ec6);
OP(FH, D, A, B, C, 0, 11, 0xeaa127fa);
OP(FH, C, D, A, B, 3, 16, 0xd4ef3085);
OP(FH, B, C, D, A, 6, 23, 0x04881d05);
OP(FH, A, B, C, D, 9, 4, 0xd9d4d039);
OP(FH, D, A, B, C, 12, 11, 0xe6db99e5);
OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8);
OP(FH, B, C, D, A, 2, 23, 0xc4ac5665);
/* Add the starting values of the context. */
A += A_save;
B += B_save;
C += C_save;
D += D_save;
/* Round 4. */
OP(FI, A, B, C, D, 0, 6, 0xf4292244);
OP(FI, D, A, B, C, 7, 10, 0x432aff97);
OP(FI, C, D, A, B, 14, 15, 0xab9423a7);
OP(FI, B, C, D, A, 5, 21, 0xfc93a039);
OP(FI, A, B, C, D, 12, 6, 0x655b59c3);
OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92);
OP(FI, C, D, A, B, 10, 15, 0xffeff47d);
OP(FI, B, C, D, A, 1, 21, 0x85845dd1);
OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f);
OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
OP(FI, C, D, A, B, 6, 15, 0xa3014314);
OP(FI, B, C, D, A, 13, 21, 0x4e0811a1);
OP(FI, A, B, C, D, 4, 6, 0xf7537e82);
OP(FI, D, A, B, C, 11, 10, 0xbd3af235);
OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
OP(FI, B, C, D, A, 9, 21, 0xeb86d391);
#undef OP
/* Add the starting values of the context. */
A += A_save;
B += B_save;
C += C_save;
D += D_save;
}
/* Put checksum in context given as argument. */
ctx->A = A;
ctx->B = B;
ctx->C = C;
ctx->D = D;
/* Put checksum in context given as argument. */
ctx->A = A;
ctx->B = B;
ctx->C = C;
ctx->D = D;
#undef FF
#undef FG
#undef FH
#undef FI
#undef CYCLIC
}
/** Put result from 'ctx' in first 16 bytes of 'resbuf'. The result is always in little endian byte order,
* so that a byte-wise output yields to the wanted ASCII representation of the message digest.
*/
static void *md5_read_ctx(const struct md5_ctx *ctx, void *resbuf)
{
md5_uint32 *digest = resbuf;
digest[0] = SWAP(ctx->A);
digest[1] = SWAP(ctx->B);
digest[2] = SWAP(ctx->C);
digest[3] = SWAP(ctx->D);
return resbuf;
}
/* Top level public functions. */
/** Compute MD5 message digest for bytes read from 'stream'.
* The resulting message digest number will be written into the 16 bytes beginning at 'resblock'.
* \return Non-zero if an error occurred.
*/
int md5_stream(FILE *stream, void *resblock)
{
#define BLOCKSIZE 4096 /* Important: must be a multiple of 64. */
struct md5_ctx ctx;
md5_uint32 len[2];
char buffer[BLOCKSIZE + 72];
size_t pad, sum;
/* Initialize the computation context. */
md5_init_ctx(&ctx);
len[0] = 0;
len[1] = 0;
/* Iterate over full file contents. */
while (1) {
/* We read the file in blocks of BLOCKSIZE bytes. One call of the computation function processes
* the whole buffer so that with the next round of the loop another block can be read.
*/
size_t n;
sum = 0;
/* Read block. Take care for partial reads. */
do {
n = fread(buffer, 1, BLOCKSIZE - sum, stream);
sum += n;
} while (sum < BLOCKSIZE && n != 0);
if (n == 0 && ferror(stream))
return 1;
/* RFC 1321 specifies the possible length of the file up to 2^64 bits.
* Here we only compute the number of bytes. Do a double word increment.
*/
len[0] += sum;
if (len[0] < sum)
++len[1];
/* If end of file is reached, end the loop. */
if (n == 0)
break;
/* Process buffer with BLOCKSIZE bytes. Note that BLOCKSIZE % 64 == 0. */
md5_process_block(buffer, BLOCKSIZE, &ctx);
}
/* We can copy 64 bytes because the buffer is always big enough. 'fillbuf' contains the needed bits. */
memcpy(&buffer[sum], fillbuf, 64);
/* Compute amount of padding bytes needed. Alignment is done to (N + PAD) % 64 == 56.
* There is always at least one byte padded, i.e. if the alignment is correctly aligned,
* 64 padding bytes are added.
*/
pad = sum & 63;
pad = pad >= 56 ? 64 + 56 - pad : 56 - pad;
/* Put the 64-bit file length in *bits* at the end of the buffer. */
*(md5_uint32 *) &buffer[sum + pad] = SWAP(len[0] << 3);
*(md5_uint32 *) &buffer[sum + pad + 4] = SWAP((len[1] << 3) | (len[0] >> 29));
/* Process last bytes. */
md5_process_block(buffer, sum + pad + 8, &ctx);
/* Construct result in desired memory. */
md5_read_ctx(&ctx, resblock);
return 0;
}
/** Compute MD5 message digest for 'len' bytes beginning at 'buffer'.
* The result is always in little endian byte order, so that a byte-wise output yields to the wanted
* ASCII representation of the message digest.
*/
void *md5_buffer(const char *buffer, size_t len, void *resblock)
{
struct md5_ctx ctx;
char restbuf[64 + 72];
size_t blocks = len & ~63;
size_t pad, rest;
/* Initialize the computation context. */
md5_init_ctx(&ctx);
/* Process whole buffer but last len % 64 bytes. */
md5_process_block(buffer, blocks, &ctx);
/* REST bytes are not processed yet. */
rest = len - blocks;
/* Copy to own buffer. */
memcpy(restbuf, &buffer[blocks], rest);
/* Append needed fill bytes at end of buffer. We can copy 64 bytes because the buffer is always big enough. */
memcpy(&restbuf[rest], fillbuf, 64);
/* PAD bytes are used for padding to correct alignment. Note that always at least one byte is padded. */
pad = rest >= 56 ? 64 + 56 - rest : 56 - rest;
/* Put length of buffer in *bits* in last eight bytes. */
*(md5_uint32 *) &restbuf[rest + pad] = (md5_uint32) SWAP(len << 3);
*(md5_uint32 *) &restbuf[rest + pad + 4] = (md5_uint32) SWAP(len >> 29);
/* Process last bytes. */
md5_process_block(restbuf, rest + pad + 8, &ctx);
/* Put result in desired memory area. */
return md5_read_ctx(&ctx, resblock);
}