Curve Fitting: offset based fallback to calculate cubics

Add a new fallback method that uses offset distance from the curve to the line between both points,
for freehand drawing it typically only fives minor improvements (1-3% fewer points),
for curve dissolve the improvements are more noticeable.
This commit is contained in:
Campbell Barton 2016-06-12 22:25:43 +10:00
parent 66b12ef4ab
commit 2033f47e55
Notes: blender-bot 2023-02-14 08:29:54 +01:00
Referenced by issue #72402, Decimate f-curves breaks curves in multiple segments.
2 changed files with 167 additions and 0 deletions

View File

@ -46,6 +46,12 @@
/* Take curvature into account when calculating the least square solution isn't usable. */
#define USE_CIRCULAR_FALLBACK
/* Use the maximum distance of any points from the direct line between 2 points
* to calculate how long the handles need to be.
* Can do a 'perfect' reversal of subdivision when for curve has symmetrical handles and doesn't change direction
* (as with an 'S' shape). */
#define USE_OFFSET_FALLBACK
/* avoid re-calculating lengths multiple times */
#define USE_LENGTH_CACHE
@ -339,6 +345,44 @@ static double cubic_calc_error(
return error_max_sq;
}
#ifdef USE_OFFSET_FALLBACK
/**
* A version #cubic_calc_error where we don't need the split-index and can exit early when over the limit.
*/
static double cubic_calc_error_simple(
const Cubic *cubic,
const double *points_offset,
const uint points_offset_len,
const double *u,
const double error_threshold_sq,
const uint dims)
{
double error_max_sq = 0.0;
const double *pt_real = points_offset + dims;
#ifdef USE_VLA
double pt_eval[dims];
#else
double *pt_eval = alloca(sizeof(double) * dims);
#endif
for (uint i = 1; i < points_offset_len - 1; i++, pt_real += dims) {
cubic_evaluate(cubic, u[i], dims, pt_eval);
const double err_sq = len_squared_vnvn(pt_real, pt_eval, dims);
if (err_sq >= error_threshold_sq) {
return error_threshold_sq;
}
else if (err_sq >= error_max_sq) {
error_max_sq = err_sq;
}
}
return error_max_sq;
}
#endif
/**
* Bezier multipliers
*/
@ -530,6 +574,85 @@ static void cubic_from_points_fallback(
}
#endif /* USE_CIRCULAR_FALLBACK */
#ifdef USE_OFFSET_FALLBACK
static void cubic_from_points_offset_fallback(
const double *points_offset,
const uint points_offset_len,
const double tan_l[],
const double tan_r[],
const uint dims,
Cubic *r_cubic)
{
const double *p0 = &points_offset[0];
const double *p3 = &points_offset[(points_offset_len - 1) * dims];
#ifdef USE_VLA
double dir_unit[dims];
double a[2][dims];
double tmp[dims];
#else
double *dir_unit = alloca(sizeof(double) * dims);
double *a[2] = {
alloca(sizeof(double) * dims),
alloca(sizeof(double) * dims),
};
double *tmp = alloca(sizeof(double) * dims);
#endif
const double dir_dist = normalize_vn_vnvn(dir_unit, p3, p0, dims);
project_plane_vn_vnvn_normalized(a[0], tan_l, dir_unit, dims);
project_plane_vn_vnvn_normalized(a[1], tan_r, dir_unit, dims);
/* only for better accuracy, not essential */
normalize_vn(a[0], dims);
normalize_vn(a[1], dims);
mul_vnvn_fl(a[1], a[1], -1, dims);
double dists[2] = {0, 0};
const double *pt = points_offset;
for (uint i = 1; i < points_offset_len - 1; i++, pt += dims) {
for (uint k = 0; k < 2; k++) {
sub_vn_vnvn(tmp, p0, pt, dims);
project_vn_vnvn_normalized(tmp, tmp, a[k], dims);
dists[k] = max(dists[k], dot_vnvn(tmp, a[k], dims));
}
}
float alpha_l = (dists[0] / 0.75) / dot_vnvn(tan_l, a[0], dims);
float alpha_r = (dists[1] / 0.75) / -dot_vnvn(tan_r, a[1], dims);
if (!(alpha_l > 0.0f)) {
alpha_l = dir_dist / 3.0;
}
if (!(alpha_r > 0.0f)) {
alpha_r = dir_dist / 3.0;
}
double *p1 = CUBIC_PT(r_cubic, 1, dims);
double *p2 = CUBIC_PT(r_cubic, 2, dims);
copy_vnvn(CUBIC_PT(r_cubic, 0, dims), p0, dims);
copy_vnvn(CUBIC_PT(r_cubic, 3, dims), p3, dims);
#ifdef USE_ORIG_INDEX_DATA
r_cubic->orig_span = (points_offset_len - 1);
#endif
/* p1 = p0 - (tan_l * alpha_l);
* p2 = p3 + (tan_r * alpha_r);
*/
msub_vn_vnvn_fl(p1, p0, tan_l, alpha_l, dims);
madd_vn_vnvn_fl(p2, p3, tan_r, alpha_r, dims);
}
#endif /* USE_OFFSET_FALLBACK */
/**
* Use least-squares method to find Bezier control points for region.
*/
@ -918,6 +1041,8 @@ static bool fit_cubic_to_points(
Cubic *cubic_test = alloca(cubic_alloc_size(dims));
/* Run this so we use the non-circular calculation when the circular-fallback
* in 'cubic_from_points' failed to give a close enough result. */
#ifdef USE_CIRCULAR_FALLBACK
if (!(error_max_sq < error_threshold_sq)) {
/* Don't use the cubic calculated above, instead calculate a new fallback cubic,
@ -940,6 +1065,24 @@ static bool fit_cubic_to_points(
}
#endif
/* Test the offset fallback */
#ifdef USE_OFFSET_FALLBACK
if (!(error_max_sq < error_threshold_sq)) {
/* Using the offset from the curve to calculate cubic handle length may give better results
* try this as a second fallback. */
cubic_from_points_offset_fallback(
points_offset, points_offset_len,
tan_l, tan_r, dims, cubic_test);
const double error_max_sq_test = cubic_calc_error_simple(
cubic_test, points_offset, points_offset_len, u, error_max_sq, dims);
if (error_max_sq > error_max_sq_test) {
error_max_sq = error_max_sq_test;
cubic_copy(r_cubic, cubic_test, dims);
}
}
#endif
*r_error_max_sq = error_max_sq;
*r_split_index = split_index;

View File

@ -290,4 +290,28 @@ MINLINE bool equals_vnvn(
return true;
}
#if 0
MINLINE void project_vn_vnvn(
double v_out[], const double p[], const double v_proj[], const uint dims)
{
const double mul = dot_vnvn(p, v_proj, dims) / dot_vnvn(v_proj, v_proj, dims);
mul_vnvn_fl(v_out, v_proj, mul, dims);
}
#endif
MINLINE void project_vn_vnvn_normalized(
double v_out[], const double p[], const double v_proj[], const uint dims)
{
const double mul = dot_vnvn(p, v_proj, dims);
mul_vnvn_fl(v_out, v_proj, mul, dims);
}
MINLINE void project_plane_vn_vnvn_normalized(
double v_out[], const double v[], const double v_plane[], const uint dims)
{
assert(v != v_out);
project_vn_vnvn_normalized(v_out, v, v_plane, dims);
sub_vn_vnvn(v_out, v, v_out, dims);
}
/** \} */