Transform: support multi-threading for most modes

Multi-threading support for transform modes: bevel-weight, crease,
push-pull, rotate, shear, shrink-fatten, skin-resize, to-sphere,
trackball & translate.

This is done using a parallel loop over transform data.

From testing a 1.5million polygon mesh on a 32 core system
the overall performance gains were between ~20-28%

To ensure the code is thread-safe arguments to shared data are const.

Reviewed By: mano-wii
This commit is contained in:
Campbell Barton 2021-06-29 16:18:26 +10:00
parent 501d2443d0
commit 2d4ec90497
Notes: blender-bot 2023-02-14 07:31:32 +01:00
Referenced by commit cdc1c60f5b, Fix T102466: push/pull doesn't work if applied to many vertices
Referenced by issue #88550, Mesh Optimization Project Progress
Referenced by issue #87228, Apply random selection factor precisely for all operators
12 changed files with 931 additions and 296 deletions

View File

@ -149,6 +149,8 @@ typedef struct TransData {
short protectflag;
} TransData;
#define TRANSDATA_THREAD_LIMIT 1024
/** #TransData.flag */
enum {
TD_SELECTED = 1 << 0,

View File

@ -25,6 +25,7 @@
#include "BLI_math.h"
#include "BLI_string.h"
#include "BLI_task.h"
#include "BKE_context.h"
#include "BKE_unit.h"
@ -39,6 +40,50 @@
#include "transform_mode.h"
#include "transform_snap.h"
/* -------------------------------------------------------------------- */
/** \name Transform (Bevel Weight) Element
* \{ */
/**
* \note Small arrays / data-structures should be stored copied for faster memory access.
*/
struct TransDataArgs_BevelWeight {
const TransInfo *t;
const TransDataContainer *tc;
float weight;
};
static void transdata_elem_bevel_weight(const TransInfo *UNUSED(t),
const TransDataContainer *UNUSED(tc),
TransData *td,
const float weight)
{
if (td->val == NULL) {
return;
}
*td->val = td->ival + weight * td->factor;
if (*td->val < 0.0f) {
*td->val = 0.0f;
}
if (*td->val > 1.0f) {
*td->val = 1.0f;
}
}
static void transdata_elem_bevel_weight_fn(void *__restrict iter_data_v,
const int iter,
const TaskParallelTLS *__restrict UNUSED(tls))
{
struct TransDataArgs_BevelWeight *data = iter_data_v;
TransData *td = &data->tc->data[iter];
if (td->flag & TD_SKIP) {
return;
}
transdata_elem_bevel_weight(data->t, data->tc, td, data->weight);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Transform (Bevel Weight)
* \{ */
@ -83,18 +128,25 @@ static void applyBevelWeight(TransInfo *t, const int UNUSED(mval[2]))
}
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
if (td->val) {
*td->val = td->ival + weight * td->factor;
if (*td->val < 0.0f) {
*td->val = 0.0f;
}
if (*td->val > 1.0f) {
*td->val = 1.0f;
if (tc->data_len < TRANSDATA_THREAD_LIMIT) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
if (td->flag & TD_SKIP) {
continue;
}
transdata_elem_bevel_weight(t, tc, td, weight);
}
}
else {
struct TransDataArgs_BevelWeight data = {
.t = t,
.tc = tc,
.weight = weight,
};
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
BLI_task_parallel_range(0, tc->data_len, &data, transdata_elem_bevel_weight_fn, &settings);
}
}
recalcData(t);

View File

@ -25,6 +25,7 @@
#include "BLI_math.h"
#include "BLI_string.h"
#include "BLI_task.h"
#include "BKE_context.h"
#include "BKE_unit.h"
@ -39,6 +40,51 @@
#include "transform_mode.h"
#include "transform_snap.h"
/* -------------------------------------------------------------------- */
/** \name Transform (Crease) Element
* \{ */
/**
* \note Small arrays / data-structures should be stored copied for faster memory access.
*/
struct TransDataArgs_Crease {
const TransInfo *t;
const TransDataContainer *tc;
float crease;
};
static void transdata_elem_crease(const TransInfo *UNUSED(t),
const TransDataContainer *UNUSED(tc),
TransData *td,
const float crease)
{
if (td->val == NULL) {
return;
}
*td->val = td->ival + crease * td->factor;
if (*td->val < 0.0f) {
*td->val = 0.0f;
}
if (*td->val > 1.0f) {
*td->val = 1.0f;
}
}
static void transdata_elem_crease_fn(void *__restrict iter_data_v,
const int iter,
const TaskParallelTLS *__restrict UNUSED(tls))
{
struct TransDataArgs_Crease *data = iter_data_v;
TransData *td = &data->tc->data[iter];
if (td->flag & TD_SKIP) {
return;
}
transdata_elem_crease(data->t, data->tc, td, data->crease);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Transform (Crease)
* \{ */
@ -83,22 +129,25 @@ static void applyCrease(TransInfo *t, const int UNUSED(mval[2]))
}
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
if (td->flag & TD_SKIP) {
continue;
}
if (td->val) {
*td->val = td->ival + crease * td->factor;
if (*td->val < 0.0f) {
*td->val = 0.0f;
}
if (*td->val > 1.0f) {
*td->val = 1.0f;
if (tc->data_len < TRANSDATA_THREAD_LIMIT) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
if (td->flag & TD_SKIP) {
continue;
}
transdata_elem_crease(t, tc, td, crease);
}
}
else {
struct TransDataArgs_Crease data = {
.t = t,
.tc = tc,
.crease = crease,
};
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
BLI_task_parallel_range(0, tc->data_len, &data, transdata_elem_crease_fn, &settings);
}
}
recalcData(t);
@ -124,4 +173,5 @@ void initCrease(TransInfo *t)
t->flag |= T_NO_CONSTRAINT | T_NO_PROJECT;
}
/** \} */

View File

@ -25,6 +25,7 @@
#include "BLI_math.h"
#include "BLI_string.h"
#include "BLI_task.h"
#include "BKE_context.h"
#include "BKE_unit.h"
@ -40,13 +41,76 @@
#include "transform_mode.h"
#include "transform_snap.h"
/* -------------------------------------------------------------------- */
/** \name Transform (Push/Pull) Element
* \{ */
/**
* \note Small arrays / data-structures should be stored copied for faster memory access.
*/
struct TransDataArgs_PushPull {
const TransInfo *t;
const TransDataContainer *tc;
float distance;
const float axis_global[3];
bool is_data_space;
};
static void transdata_elem_push_pull(const TransInfo *t,
const TransDataContainer *tc,
TransData *td,
const float distance,
const float axis_global[3],
const bool is_data_space)
{
float vec[3];
sub_v3_v3v3(vec, tc->center_local, td->center);
if (t->con.applyRot && t->con.mode & CON_APPLY) {
float axis[3];
copy_v3_v3(axis, axis_global);
t->con.applyRot(t, tc, td, axis, NULL);
mul_m3_v3(td->smtx, axis);
if (isLockConstraint(t)) {
float dvec[3];
project_v3_v3v3(dvec, vec, axis);
sub_v3_v3(vec, dvec);
}
else {
project_v3_v3v3(vec, vec, axis);
}
}
normalize_v3_length(vec, distance * td->factor);
if (is_data_space) {
mul_m3_v3(td->smtx, vec);
}
add_v3_v3v3(td->loc, td->iloc, vec);
}
static void transdata_elem_push_pull_fn(void *__restrict iter_data_v,
const int iter,
const TaskParallelTLS *__restrict UNUSED(tls))
{
struct TransDataArgs_PushPull *data = iter_data_v;
TransData *td = &data->tc->data[iter];
if (td->flag & TD_SKIP) {
return;
}
transdata_elem_push_pull(
data->t, data->tc, td, data->distance, data->axis_global, data->is_data_space);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Transform (Push/Pull)
* \{ */
static void applyPushPull(TransInfo *t, const int UNUSED(mval[2]))
{
float vec[3], axis_global[3];
float axis_global[3];
float distance;
int i;
char str[UI_MAX_DRAW_STR];
@ -80,34 +144,26 @@ static void applyPushPull(TransInfo *t, const int UNUSED(mval[2]))
const bool is_data_space = (t->options & CTX_POSE_BONE) != 0;
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
if (td->flag & TD_SKIP) {
continue;
}
sub_v3_v3v3(vec, tc->center_local, td->center);
if (t->con.applyRot && t->con.mode & CON_APPLY) {
float axis[3];
copy_v3_v3(axis, axis_global);
t->con.applyRot(t, tc, td, axis, NULL);
mul_m3_v3(td->smtx, axis);
if (isLockConstraint(t)) {
float dvec[3];
project_v3_v3v3(dvec, vec, axis);
sub_v3_v3(vec, dvec);
if (tc->data_len < TRANSDATA_THREAD_LIMIT) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
if (td->flag & TD_SKIP) {
continue;
}
else {
project_v3_v3v3(vec, vec, axis);
}
}
normalize_v3_length(vec, distance * td->factor);
if (is_data_space) {
mul_m3_v3(td->smtx, vec);
}
add_v3_v3v3(td->loc, td->iloc, vec);
transdata_elem_push_pull(t, tc, td, distance, axis_global, is_data_space);
}
}
else {
struct TransDataArgs_PushPull data = {
.t = t,
.tc = tc,
.axis_global = {UNPACK3(axis_global)},
.is_data_space = is_data_space,
};
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
BLI_task_parallel_range(0, tc->data_len, &data, transdata_elem_push_pull_fn, &settings);
}
}

View File

@ -24,6 +24,7 @@
#include <stdlib.h>
#include "BLI_math.h"
#include "BLI_task.h"
#include "BKE_context.h"
#include "BKE_unit.h"
@ -38,6 +39,30 @@
#include "transform_mode.h"
#include "transform_snap.h"
/* -------------------------------------------------------------------- */
/** \name Transform (Resize) Element
* \{ */
struct ElemResizeData {
const TransInfo *t;
const TransDataContainer *tc;
float mat[3][3];
};
static void element_resize_fn(void *__restrict iter_data_v,
const int iter,
const TaskParallelTLS *__restrict UNUSED(tls))
{
struct ElemResizeData *data = iter_data_v;
TransData *td = &data->tc->data[iter];
if (td->flag & TD_SKIP) {
return;
}
ElementResize(data->t, data->tc, td, data->mat);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Transform (Resize)
* \{ */
@ -123,13 +148,27 @@ static void applyResize(TransInfo *t, const int UNUSED(mval[2]))
copy_m3_m3(t->mat, mat); /* used in gizmo */
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
if (td->flag & TD_SKIP) {
continue;
}
ElementResize(t, tc, td, mat);
if (tc->data_len < TRANSDATA_THREAD_LIMIT) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
if (td->flag & TD_SKIP) {
continue;
}
ElementResize(t, tc, td, mat);
}
}
else {
struct ElemResizeData data = {
.t = t,
.tc = tc,
};
copy_m3_m3(data.mat, mat);
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
BLI_task_parallel_range(0, tc->data_len, &data, element_resize_fn, &settings);
}
}

View File

@ -24,6 +24,7 @@
#include <stdlib.h>
#include "BLI_math.h"
#include "BLI_task.h"
#include "BKE_context.h"
#include "BKE_unit.h"
@ -36,6 +37,140 @@
#include "transform_mode.h"
#include "transform_snap.h"
/* -------------------------------------------------------------------- */
/** \name Transform (Rotation) Matrix Cache
* \{ */
struct RotateMatrixCache {
/**
* Counter for needed updates (when we need to update to non-default matrix,
* we also need another update on next iteration to go back to default matrix,
* hence the '2' value used here, instead of a mere boolean).
*/
short do_update_matrix;
float mat[3][3];
};
static void rmat_cache_init(struct RotateMatrixCache *rmc, const float angle, const float axis[3])
{
axis_angle_normalized_to_mat3(rmc->mat, axis, angle);
rmc->do_update_matrix = 0;
}
static void rmat_cache_reset(struct RotateMatrixCache *rmc)
{
rmc->do_update_matrix = 2;
}
static void rmat_cache_update(struct RotateMatrixCache *rmc,
const float axis[3],
const float angle)
{
if (rmc->do_update_matrix > 0) {
axis_angle_normalized_to_mat3(rmc->mat, axis, angle);
rmc->do_update_matrix--;
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Transform (Rotation) Element
* \{ */
/**
* \note Small arrays / data-structures should be stored copied for faster memory access.
*/
struct TransDataArgs_Rotate {
const TransInfo *t;
const TransDataContainer *tc;
const float axis[3];
float angle;
float angle_step;
bool is_large_rotation;
};
struct TransDataArgs_RotateTLS {
struct RotateMatrixCache rmc;
};
static void transdata_elem_rotate(const TransInfo *t,
const TransDataContainer *tc,
TransData *td,
const float axis[3],
const float angle,
const float angle_step,
const bool is_large_rotation,
struct RotateMatrixCache *rmc)
{
float axis_buffer[3];
const float *axis_final = axis;
float angle_final = angle;
if (t->con.applyRot) {
copy_v3_v3(axis_buffer, axis);
axis_final = axis_buffer;
t->con.applyRot(t, tc, td, axis_buffer, NULL);
angle_final = angle * td->factor;
/* Even though final angle might be identical to orig value,
* we have to update the rotation matrix in that case... */
rmat_cache_reset(rmc);
}
else if (t->flag & T_PROP_EDIT) {
angle_final = angle * td->factor;
}
/* Rotation is very likely to be above 180°, we need to do rotation by steps.
* Note that this is only needed when doing 'absolute' rotation
* (i.e. from initial rotation again, typically when using numinput).
* regular incremental rotation (from mouse/widget/...) will be called often enough,
* hence steps are small enough to be properly handled without that complicated trick.
* Note that we can only do that kind of stepped rotation if we have initial rotation values
* (and access to some actual rotation value storage).
* Otherwise, just assume it's useless (e.g. in case of mesh/UV/etc. editing).
* Also need to be in Euler rotation mode, the others never allow more than one turn anyway.
*/
if (is_large_rotation && td->ext != NULL && td->ext->rotOrder == ROT_MODE_EUL) {
copy_v3_v3(td->ext->rot, td->ext->irot);
for (float angle_progress = angle_step; fabsf(angle_progress) < fabsf(angle_final);
angle_progress += angle_step) {
axis_angle_normalized_to_mat3(rmc->mat, axis_final, angle_progress);
ElementRotation(t, tc, td, rmc->mat, t->around);
}
rmat_cache_reset(rmc);
}
else if (angle_final != angle) {
rmat_cache_reset(rmc);
}
rmat_cache_update(rmc, axis_final, angle_final);
ElementRotation(t, tc, td, rmc->mat, t->around);
}
static void transdata_elem_rotate_fn(void *__restrict iter_data_v,
const int iter,
const TaskParallelTLS *__restrict tls)
{
struct TransDataArgs_Rotate *data = iter_data_v;
struct TransDataArgs_RotateTLS *tls_data = tls->userdata_chunk;
TransData *td = &data->tc->data[iter];
if (td->flag & TD_SKIP) {
return;
}
transdata_elem_rotate(data->t,
data->tc,
td,
data->axis,
data->angle,
data->angle_step,
data->is_large_rotation,
&tls_data->rmc);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Transform (Rotation)
* \{ */
@ -115,12 +250,9 @@ static float large_rotation_limit(float angle)
static void applyRotationValue(TransInfo *t,
float angle,
float axis[3],
const float axis[3],
const bool is_large_rotation)
{
float mat[3][3];
int i;
const float angle_sign = angle < 0.0f ? -1.0f : 1.0f;
/* We cannot use something too close to 180°, or 'continuous' rotation may fail
* due to computing error... */
@ -132,60 +264,37 @@ static void applyRotationValue(TransInfo *t,
angle = large_rotation_limit(angle);
}
axis_angle_normalized_to_mat3(mat, axis, angle);
/* Counter for needed updates (when we need to update to non-default matrix,
* we also need another update on next iteration to go back to default matrix,
* hence the '2' value used here, instead of a mere boolean). */
short do_update_matrix = 0;
struct RotateMatrixCache rmc = {0};
rmat_cache_init(&rmc, angle, axis);
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
if (td->flag & TD_SKIP) {
continue;
}
float angle_final = angle;
if (t->con.applyRot) {
t->con.applyRot(t, tc, td, axis, NULL);
angle_final = angle * td->factor;
/* Even though final angle might be identical to orig value,
* we have to update the rotation matrix in that case... */
do_update_matrix = 2;
}
else if (t->flag & T_PROP_EDIT) {
angle_final = angle * td->factor;
}
/* Rotation is very likely to be above 180°, we need to do rotation by steps.
* Note that this is only needed when doing 'absolute' rotation
* (i.e. from initial rotation again, typically when using numinput).
* regular incremental rotation (from mouse/widget/...) will be called often enough,
* hence steps are small enough to be properly handled without that complicated trick.
* Note that we can only do that kind of stepped rotation if we have initial rotation values
* (and access to some actual rotation value storage).
* Otherwise, just assume it's useless (e.g. in case of mesh/UV/etc. editing).
* Also need to be in Euler rotation mode, the others never allow more than one turn anyway.
*/
if (is_large_rotation && td->ext != NULL && td->ext->rotOrder == ROT_MODE_EUL) {
copy_v3_v3(td->ext->rot, td->ext->irot);
for (float angle_progress = angle_step; fabsf(angle_progress) < fabsf(angle_final);
angle_progress += angle_step) {
axis_angle_normalized_to_mat3(mat, axis, angle_progress);
ElementRotation(t, tc, td, mat, t->around);
if (tc->data_len < TRANSDATA_THREAD_LIMIT) {
TransData *td = tc->data;
for (int i = 0; i < tc->data_len; i++, td++) {
if (td->flag & TD_SKIP) {
continue;
}
do_update_matrix = 2;
}
else if (angle_final != angle) {
do_update_matrix = 2;
transdata_elem_rotate(t, tc, td, axis, angle, angle_step, is_large_rotation, &rmc);
}
}
else {
struct TransDataArgs_Rotate data = {
.t = t,
.tc = tc,
.axis = {UNPACK3(axis)},
.angle = angle,
.angle_step = angle_step,
.is_large_rotation = is_large_rotation,
};
struct TransDataArgs_RotateTLS tls_data = {
.rmc = rmc,
};
if (do_update_matrix > 0) {
axis_angle_normalized_to_mat3(mat, axis, angle_final);
do_update_matrix--;
}
ElementRotation(t, tc, td, mat, t->around);
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.userdata_chunk = &tls_data;
settings.userdata_chunk_size = sizeof(tls_data);
BLI_task_parallel_range(0, tc->data_len, &data, transdata_elem_rotate_fn, &settings);
}
}
}

View File

@ -27,6 +27,7 @@
#include "BLI_math.h"
#include "BLI_string.h"
#include "BLI_task.h"
#include "BKE_context.h"
#include "BKE_unit.h"
@ -43,6 +44,79 @@
#include "transform_mode.h"
#include "transform_snap.h"
/* -------------------------------------------------------------------- */
/** \name Transform (Shear) Element
* \{ */
/**
* \note Small arrays / data-structures should be stored copied for faster memory access.
*/
struct TransDataArgs_Shear {
const TransInfo *t;
const TransDataContainer *tc;
float totmat[3][3];
bool is_local_center;
};
static void transdata_elem_shear(const TransInfo *t,
const TransDataContainer *tc,
TransData *td,
const float totmat[3][3],
const bool is_local_center)
{
float tmat[3][3];
const float *center;
if (t->flag & T_EDIT) {
mul_m3_series(tmat, td->smtx, totmat, td->mtx);
}
else {
copy_m3_m3(tmat, totmat);
}
if (is_local_center) {
center = td->center;
}
else {
center = tc->center_local;
}
float vec[3];
sub_v3_v3v3(vec, td->iloc, center);
mul_m3_v3(tmat, vec);
add_v3_v3(vec, center);
sub_v3_v3(vec, td->iloc);
if (t->options & CTX_GPENCIL_STROKES) {
/* Grease pencil multi-frame falloff. */
bGPDstroke *gps = (bGPDstroke *)td->extra;
if (gps != NULL) {
mul_v3_fl(vec, td->factor * gps->runtime.multi_frame_falloff);
}
else {
mul_v3_fl(vec, td->factor);
}
}
else {
mul_v3_fl(vec, td->factor);
}
add_v3_v3v3(td->loc, td->iloc, vec);
}
static void transdata_elem_shear_fn(void *__restrict iter_data_v,
const int iter,
const TaskParallelTLS *__restrict UNUSED(tls))
{
struct TransDataArgs_Shear *data = iter_data_v;
TransData *td = &data->tc->data[iter];
if (td->flag & TD_SKIP) {
return;
}
transdata_elem_shear(data->t, data->tc, td, data->totmat, data->is_local_center);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Transform (Shear)
* \{ */
@ -117,8 +191,7 @@ static eRedrawFlag handleEventShear(TransInfo *t, const wmEvent *event)
static void applyShear(TransInfo *t, const int UNUSED(mval[2]))
{
float vec[3];
float smat[3][3], tmat[3][3], totmat[3][3], axismat[3][3], axismat_inv[3][3];
float smat[3][3], totmat[3][3], axismat[3][3], axismat_inv[3][3];
float value;
int i;
char str[UI_MAX_DRAW_STR];
@ -160,47 +233,26 @@ static void applyShear(TransInfo *t, const int UNUSED(mval[2]))
mul_m3_series(totmat, axismat_inv, smat, axismat);
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
const float *center;
if (td->flag & TD_SKIP) {
continue;
}
if (t->flag & T_EDIT) {
mul_m3_series(tmat, td->smtx, totmat, td->mtx);
}
else {
copy_m3_m3(tmat, totmat);
}
if (is_local_center) {
center = td->center;
}
else {
center = tc->center_local;
}
sub_v3_v3v3(vec, td->iloc, center);
mul_m3_v3(tmat, vec);
add_v3_v3(vec, center);
sub_v3_v3(vec, td->iloc);
if (t->options & CTX_GPENCIL_STROKES) {
/* grease pencil multiframe falloff */
bGPDstroke *gps = (bGPDstroke *)td->extra;
if (gps != NULL) {
mul_v3_fl(vec, td->factor * gps->runtime.multi_frame_falloff);
}
else {
mul_v3_fl(vec, td->factor);
if (tc->data_len < TRANSDATA_THREAD_LIMIT) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
if (td->flag & TD_SKIP) {
continue;
}
transdata_elem_shear(t, tc, td, totmat, is_local_center);
}
else {
mul_v3_fl(vec, td->factor);
}
}
else {
struct TransDataArgs_Shear data = {
.t = t,
.tc = tc,
.is_local_center = is_local_center,
};
copy_m3_m3(data.totmat, totmat);
add_v3_v3v3(td->loc, td->iloc, vec);
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
BLI_task_parallel_range(0, tc->data_len, &data, transdata_elem_shear_fn, &settings);
}
}

View File

@ -25,6 +25,7 @@
#include "BLI_math.h"
#include "BLI_string.h"
#include "BLI_task.h"
#include "BKE_context.h"
#include "BKE_unit.h"
@ -42,6 +43,47 @@
#include "transform_mode.h"
#include "transform_snap.h"
/* -------------------------------------------------------------------- */
/** \name Transform (Shrink-Fatten) Element
* \{ */
/**
* \note Small arrays / data-structures should be stored copied for faster memory access.
*/
struct TransDataArgs_ShrinkFatten {
const TransInfo *t;
const TransDataContainer *tc;
float distance;
};
static void transdata_elem_shrink_fatten(const TransInfo *t,
const TransDataContainer *UNUSED(tc),
TransData *td,
const float distance)
{
/* Get the final offset. */
float tdistance = distance * td->factor;
if (td->ext && (t->flag & T_ALT_TRANSFORM) != 0) {
tdistance *= td->ext->isize[0]; /* shell factor */
}
madd_v3_v3v3fl(td->loc, td->iloc, td->axismtx[2], tdistance);
}
static void transdata_elem_shrink_fatten_fn(void *__restrict iter_data_v,
const int iter,
const TaskParallelTLS *__restrict UNUSED(tls))
{
struct TransDataArgs_ShrinkFatten *data = iter_data_v;
TransData *td = &data->tc->data[iter];
if (td->flag & TD_SKIP) {
return;
}
transdata_elem_shrink_fatten(data->t, data->tc, td, data->distance);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Transform (Shrink-Fatten)
* \{ */
@ -114,20 +156,24 @@ static void applyShrinkFatten(TransInfo *t, const int UNUSED(mval[2]))
/* done with header string */
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
float tdistance; /* temp dist */
if (td->flag & TD_SKIP) {
continue;
if (tc->data_len < TRANSDATA_THREAD_LIMIT) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
if (td->flag & TD_SKIP) {
continue;
}
transdata_elem_shrink_fatten(t, tc, td, distance);
}
/* get the final offset */
tdistance = distance * td->factor;
if (td->ext && (t->flag & T_ALT_TRANSFORM) != 0) {
tdistance *= td->ext->isize[0]; /* shell factor */
}
madd_v3_v3v3fl(td->loc, td->iloc, td->axismtx[2], tdistance);
}
else {
struct TransDataArgs_ShrinkFatten data = {
.t = t,
.tc = tc,
.distance = distance,
};
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
BLI_task_parallel_range(0, tc->data_len, &data, transdata_elem_shrink_fatten_fn, &settings);
}
}

View File

@ -24,6 +24,7 @@
#include <stdlib.h>
#include "BLI_math.h"
#include "BLI_task.h"
#include "BKE_context.h"
#include "BKE_unit.h"
@ -37,6 +38,58 @@
#include "transform_mode.h"
#include "transform_snap.h"
/* -------------------------------------------------------------------- */
/** \name Transform (Skin) Element
* \{ */
/**
* \note Small arrays / data-structures should be stored copied for faster memory access.
*/
struct TransDataArgs_SkinResize {
const TransInfo *t;
const TransDataContainer *tc;
float mat[3][3];
};
static void transdata_elem_skin_resize(const TransInfo *t,
const TransDataContainer *UNUSED(tc),
TransData *td,
const float mat[3][3])
{
float tmat[3][3], smat[3][3];
float fsize[3];
if (t->flag & T_EDIT) {
mul_m3_m3m3(smat, mat, td->mtx);
mul_m3_m3m3(tmat, td->smtx, smat);
}
else {
copy_m3_m3(tmat, mat);
}
if (t->con.applySize) {
t->con.applySize(t, NULL, NULL, tmat);
}
mat3_to_size(fsize, tmat);
td->loc[0] = td->iloc[0] * (1 + (fsize[0] - 1) * td->factor);
td->loc[1] = td->iloc[1] * (1 + (fsize[1] - 1) * td->factor);
}
static void transdata_elem_skin_resize_fn(void *__restrict iter_data_v,
const int iter,
const TaskParallelTLS *__restrict UNUSED(tls))
{
struct TransDataArgs_SkinResize *data = iter_data_v;
TransData *td = &data->tc->data[iter];
if (td->flag & TD_SKIP) {
return;
}
transdata_elem_skin_resize(data->t, data->tc, td, data->mat);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Transform (Skin)
* \{ */
@ -67,29 +120,24 @@ static void applySkinResize(TransInfo *t, const int UNUSED(mval[2]))
headerResize(t, t->values_final, str, sizeof(str));
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
float tmat[3][3], smat[3][3];
float fsize[3];
if (td->flag & TD_SKIP) {
continue;
if (tc->data_len < TRANSDATA_THREAD_LIMIT) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
if (td->flag & TD_SKIP) {
continue;
}
transdata_elem_skin_resize(t, tc, td, mat);
}
if (t->flag & T_EDIT) {
mul_m3_m3m3(smat, mat, td->mtx);
mul_m3_m3m3(tmat, td->smtx, smat);
}
else {
copy_m3_m3(tmat, mat);
}
if (t->con.applySize) {
t->con.applySize(t, NULL, NULL, tmat);
}
mat3_to_size(fsize, tmat);
td->loc[0] = td->iloc[0] * (1 + (fsize[0] - 1) * td->factor);
td->loc[1] = td->iloc[1] * (1 + (fsize[1] - 1) * td->factor);
}
else {
struct TransDataArgs_SkinResize data = {
.t = t,
.tc = tc,
};
copy_m3_m3(data.mat, mat);
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
BLI_task_parallel_range(0, tc->data_len, &data, transdata_elem_skin_resize_fn, &settings);
}
}

View File

@ -25,6 +25,7 @@
#include "BLI_math.h"
#include "BLI_string.h"
#include "BLI_task.h"
#include "MEM_guardedalloc.h"
@ -110,6 +111,74 @@ static void to_sphere_radius_update(TransInfo *t)
/** \} */
/* -------------------------------------------------------------------- */
/** \name Transform (ToSphere) Element
* \{ */
/**
* \note Small arrays / data-structures should be stored copied for faster memory access.
*/
struct TransDataArgs_ToSphere {
const TransInfo *t;
const TransDataContainer *tc;
float ratio;
const struct ToSphereInfo to_sphere_info;
bool is_local_center;
bool is_data_space;
};
static void transdata_elem_to_sphere(const TransInfo *UNUSED(t),
const TransDataContainer *tc,
TransData *td,
const float ratio,
const struct ToSphereInfo *to_sphere_info,
const bool is_local_center,
const bool is_data_space)
{
float vec[3];
const float *center = is_local_center ? td->center : tc->center_local;
if (is_data_space) {
copy_v3_v3(vec, td->center);
}
else {
copy_v3_v3(vec, td->iloc);
}
sub_v3_v3(vec, center);
const float radius = normalize_v3(vec);
const float tratio = ratio * td->factor;
mul_v3_fl(vec, radius * (1.0f - tratio) + to_sphere_info->radius * tratio);
add_v3_v3(vec, center);
if (is_data_space) {
sub_v3_v3(vec, td->center);
mul_m3_v3(td->smtx, vec);
add_v3_v3(vec, td->iloc);
}
copy_v3_v3(td->loc, vec);
}
static void transdata_elem_to_sphere_fn(void *__restrict iter_data_v,
const int iter,
const TaskParallelTLS *__restrict UNUSED(tls))
{
struct TransDataArgs_ToSphere *data = iter_data_v;
TransData *td = &data->tc->data[iter];
if (td->flag & TD_SKIP) {
return;
}
transdata_elem_to_sphere(data->t,
data->tc,
td,
data->ratio,
&data->to_sphere_info,
data->is_local_center,
data->is_data_space);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Transform (ToSphere)
* \{ */
@ -119,8 +188,7 @@ static void applyToSphere(TransInfo *t, const int UNUSED(mval[2]))
const bool is_local_center = transdata_check_local_center(t, t->around);
const bool is_data_space = (t->options & CTX_POSE_BONE) != 0;
float vec[3];
float ratio, radius;
float ratio;
int i;
char str[UI_MAX_DRAW_STR];
@ -147,40 +215,33 @@ static void applyToSphere(TransInfo *t, const int UNUSED(mval[2]))
BLI_snprintf(str, sizeof(str), TIP_("To Sphere: %.4f %s"), ratio, t->proptext);
}
const struct ToSphereInfo *data = t->custom.mode.data;
if (data->prop_size_prev != t->prop_size) {
const struct ToSphereInfo *to_sphere_info = t->custom.mode.data;
if (to_sphere_info->prop_size_prev != t->prop_size) {
to_sphere_radius_update(t);
}
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
float tratio;
if (td->flag & TD_SKIP) {
continue;
if (tc->data_len < TRANSDATA_THREAD_LIMIT) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
if (td->flag & TD_SKIP) {
continue;
}
transdata_elem_to_sphere(t, tc, td, ratio, to_sphere_info, is_local_center, is_data_space);
}
const float *center = is_local_center ? td->center : tc->center_local;
if (is_data_space) {
copy_v3_v3(vec, td->center);
}
else {
copy_v3_v3(vec, td->iloc);
}
sub_v3_v3(vec, center);
radius = normalize_v3(vec);
tratio = ratio * td->factor;
mul_v3_fl(vec, radius * (1.0f - tratio) + data->radius * tratio);
add_v3_v3(vec, center);
if (is_data_space) {
sub_v3_v3(vec, td->center);
mul_m3_v3(td->smtx, vec);
add_v3_v3(vec, td->iloc);
}
copy_v3_v3(td->loc, vec);
}
else {
struct TransDataArgs_ToSphere data = {
.t = t,
.tc = tc,
.ratio = ratio,
.to_sphere_info = *to_sphere_info,
.is_local_center = is_local_center,
.is_data_space = is_data_space,
};
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
BLI_task_parallel_range(0, tc->data_len, &data, transdata_elem_to_sphere_fn, &settings);
}
}

View File

@ -25,6 +25,7 @@
#include "BLI_math.h"
#include "BLI_string.h"
#include "BLI_task.h"
#include "BKE_context.h"
#include "BKE_unit.h"
@ -39,6 +40,51 @@
#include "transform_mode.h"
#include "transform_snap.h"
/* -------------------------------------------------------------------- */
/** \name Transform (Rotation - Trackball) Element
* \{ */
/**
* \note Small arrays / data-structures should be stored copied for faster memory access.
*/
struct TransDataArgs_Trackball {
const TransInfo *t;
const TransDataContainer *tc;
const float axis[3];
const float angle;
float mat[3][3];
};
static void transdata_elem_trackball(const TransInfo *t,
const TransDataContainer *tc,
TransData *td,
const float axis[3],
const float angle,
const float mat[3][3])
{
float mat_buf[3][3];
const float(*mat_final)[3] = mat;
if (t->flag & T_PROP_EDIT) {
axis_angle_normalized_to_mat3(mat_buf, axis, td->factor * angle);
mat_final = mat_buf;
}
ElementRotation(t, tc, td, mat_final, t->around);
}
static void transdata_elem_trackball_fn(void *__restrict iter_data_v,
const int iter,
const TaskParallelTLS *__restrict UNUSED(tls))
{
struct TransDataArgs_Trackball *data = iter_data_v;
TransData *td = &data->tc->data[iter];
if (td->flag & TD_SKIP) {
return;
}
transdata_elem_trackball(data->t, data->tc, td, data->axis, data->angle, data->mat);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Transform (Rotation - Trackball)
* \{ */
@ -59,17 +105,27 @@ static void applyTrackballValue(TransInfo *t,
axis_angle_normalized_to_mat3(mat, axis, angle);
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
if (td->flag & TD_SKIP) {
continue;
if (tc->data_len < TRANSDATA_THREAD_LIMIT) {
TransData *td = tc->data;
for (i = 0; i < tc->data_len; i++, td++) {
if (td->flag & TD_SKIP) {
continue;
}
transdata_elem_trackball(t, tc, td, axis, angle, mat);
}
}
else {
struct TransDataArgs_Trackball data = {
.t = t,
.tc = tc,
.axis = {UNPACK3(axis)},
.angle = angle,
};
copy_m3_m3(data.mat, mat);
if (t->flag & T_PROP_EDIT) {
axis_angle_normalized_to_mat3(mat, axis, td->factor * angle);
}
ElementRotation(t, tc, td, mat, t->around);
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
BLI_task_parallel_range(0, tc->data_len, &data, transdata_elem_trackball_fn, &settings);
}
}
}

View File

@ -29,6 +29,7 @@
#include "BLI_math.h"
#include "BLI_string.h"
#include "BLI_task.h"
#include "BKE_context.h"
#include "BKE_report.h"
@ -48,6 +49,121 @@
#include "transform_mode.h"
#include "transform_snap.h"
/* -------------------------------------------------------------------- */
/** \name Transform (Translation) Element
* \{ */
/**
* \note Small arrays / data-structures should be stored copied for faster memory access.
*/
struct TransDataArgs_Translate {
const TransInfo *t;
const TransDataContainer *tc;
const float tc_pivot[3];
const float vec[3];
bool apply_snap_align_rotation;
bool is_valid_snapping_normal;
};
static void transdata_elem_translate(const TransInfo *t,
const TransDataContainer *tc,
TransData *td,
const float pivot[3],
const float vec[3],
const bool apply_snap_align_rotation,
const bool is_valid_snapping_normal)
{
float rotate_offset[3] = {0};
bool use_rotate_offset = false;
/* Handle snapping rotation before doing the translation. */
if (apply_snap_align_rotation) {
float mat[3][3];
if (is_valid_snapping_normal) {
const float *original_normal;
/* In pose mode, we want to align normals with Y axis of bones. */
if (t->options & CTX_POSE_BONE) {
original_normal = td->axismtx[1];
}
else {
original_normal = td->axismtx[2];
}
rotation_between_vecs_to_mat3(mat, original_normal, t->tsnap.snapNormal);
}
else {
unit_m3(mat);
}
ElementRotation_ex(t, tc, td, mat, pivot);
if (td->loc) {
use_rotate_offset = true;
sub_v3_v3v3(rotate_offset, td->loc, td->iloc);
}
}
float tvec[3];
if (t->con.applyVec) {
t->con.applyVec(t, tc, td, vec, tvec);
}
else {
copy_v3_v3(tvec, vec);
}
mul_m3_v3(td->smtx, tvec);
if (use_rotate_offset) {
add_v3_v3(tvec, rotate_offset);
}
if (t->options & CTX_GPENCIL_STROKES) {
/* Grease pencil multi-frame falloff. */
bGPDstroke *gps = (bGPDstroke *)td->extra;
if (gps != NULL) {
mul_v3_fl(tvec, td->factor * gps->runtime.multi_frame_falloff);
}
else {
mul_v3_fl(tvec, td->factor);
}
}
else {
/* Proportional editing falloff. */
mul_v3_fl(tvec, td->factor);
}
protectedTransBits(td->protectflag, tvec);
if (td->loc) {
add_v3_v3v3(td->loc, td->iloc, tvec);
}
constraintTransLim(t, td);
}
static void transdata_elem_translate_fn(void *__restrict iter_data_v,
const int iter,
const TaskParallelTLS *__restrict UNUSED(tls))
{
struct TransDataArgs_Translate *data = iter_data_v;
TransData *td = &data->tc->data[iter];
if (td->flag & TD_SKIP) {
return;
}
transdata_elem_translate(data->t,
data->tc,
td,
data->tc_pivot,
data->vec,
data->apply_snap_align_rotation,
data->is_valid_snapping_normal);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Transform (Translation)
* \{ */
@ -242,14 +358,13 @@ static void ApplySnapTranslation(TransInfo *t, float vec[3])
static void applyTranslationValue(TransInfo *t, const float vec[3])
{
const bool apply_snap_align_rotation = usingSnappingNormal(t);
float tvec[3];
const bool is_valid_snapping_normal = apply_snap_align_rotation && validSnappingNormal(t);
/* Ideally "apply_snap_align_rotation" would only be used when a snap point is found:
* `t->tsnap.status & POINT_INIT` - perhaps this function isn't the best place to apply rotation.
* However snapping rotation needs to be handled before doing the translation
* (unless the pivot is also translated). */
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
float pivot[3];
if (apply_snap_align_rotation) {
copy_v3_v3(pivot, t->tsnap.snapTarget);
@ -259,79 +374,28 @@ static void applyTranslationValue(TransInfo *t, const float vec[3])
}
}
TransData *td = tc->data;
for (int i = 0; i < tc->data_len; i++, td++) {
if (td->flag & TD_SKIP) {
continue;
}
float rotate_offset[3] = {0};
bool use_rotate_offset = false;
/* Handle snapping rotation before doing the translation. */
if (apply_snap_align_rotation) {
float mat[3][3];
if (validSnappingNormal(t)) {
const float *original_normal;
/* In pose mode, we want to align normals with Y axis of bones. */
if (t->options & CTX_POSE_BONE) {
original_normal = td->axismtx[1];
}
else {
original_normal = td->axismtx[2];
}
rotation_between_vecs_to_mat3(mat, original_normal, t->tsnap.snapNormal);
}
else {
unit_m3(mat);
}
ElementRotation_ex(t, tc, td, mat, pivot);
if (td->loc) {
use_rotate_offset = true;
sub_v3_v3v3(rotate_offset, td->loc, td->iloc);
if (tc->data_len < TRANSDATA_THREAD_LIMIT) {
TransData *td = tc->data;
for (int i = 0; i < tc->data_len; i++, td++) {
if (td->flag & TD_SKIP) {
continue;
}
transdata_elem_translate(
t, tc, td, pivot, vec, apply_snap_align_rotation, is_valid_snapping_normal);
}
if (t->con.applyVec) {
t->con.applyVec(t, tc, td, vec, tvec);
}
else {
copy_v3_v3(tvec, vec);
}
mul_m3_v3(td->smtx, tvec);
if (use_rotate_offset) {
add_v3_v3(tvec, rotate_offset);
}
if (t->options & CTX_GPENCIL_STROKES) {
/* Grease pencil multi-frame falloff. */
bGPDstroke *gps = (bGPDstroke *)td->extra;
if (gps != NULL) {
mul_v3_fl(tvec, td->factor * gps->runtime.multi_frame_falloff);
}
else {
mul_v3_fl(tvec, td->factor);
}
}
else {
/* Proportional editing falloff. */
mul_v3_fl(tvec, td->factor);
}
protectedTransBits(td->protectflag, tvec);
if (td->loc) {
add_v3_v3v3(td->loc, td->iloc, tvec);
}
constraintTransLim(t, td);
}
else {
struct TransDataArgs_Translate data = {
.t = t,
.tc = tc,
.tc_pivot = {UNPACK3(pivot)},
.vec = {UNPACK3(vec)},
.apply_snap_align_rotation = apply_snap_align_rotation,
.is_valid_snapping_normal = is_valid_snapping_normal,
};
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
BLI_task_parallel_range(0, tc->data_len, &data, transdata_elem_translate_fn, &settings);
}
}
}