BLI: Implement templated math functions for basic types

This is meant to complement the `blender::math` functions recently
added by D13791. It's sometimes desired to template an operation to work
on vector types, but also basic types like `float` and `int`. This patch
adds that ability with a new `BLI_math_base.hh` header.

The existing vector math header is changed to use the `vec_base` type
more explicitly, to allow the compiler's generic function overload resolution
to determine which implementation of each math function to use.
This is a relatively large change, but it also makes the file significantly
easier to understand by reducing the use of macros.

Differential Revision: https://developer.blender.org/D14113
This commit is contained in:
Hans Goudey 2022-02-16 10:28:18 -06:00
parent 5b3a415a59
commit 399168f3c1
6 changed files with 275 additions and 119 deletions

View File

@ -0,0 +1,104 @@
/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2022 Blender Foundation. */
#pragma once
/** \file
* \ingroup bli
*/
#include <algorithm>
#include <cmath>
#include <type_traits>
#include "BLI_math_base_safe.h"
#include "BLI_math_vec_types.hh"
#include "BLI_utildefines.h"
#ifdef WITH_GMP
# include "BLI_math_mpq.hh"
#endif
namespace blender::math {
template<typename T> inline bool is_zero(const T &a)
{
return a == T(0);
}
template<typename T> inline bool is_any_zero(const T &a)
{
return is_zero(a);
}
template<typename T> inline T abs(const T &a)
{
return std::abs(a);
}
template<typename T> inline T min(const T &a, const T &b)
{
return std::min(a, b);
}
template<typename T> inline T max(const T &a, const T &b)
{
return std::max(a, b);
}
template<typename T> inline T clamp(const T &a, const T &min, const T &max)
{
return std::clamp(a, min, max);
}
template<typename T, BLI_ENABLE_IF((is_math_float_type<T>))> inline T mod(const T &a, const T &b)
{
return std::fmod(a, b);
}
template<typename T, BLI_ENABLE_IF((is_math_float_type<T>))>
inline T safe_mod(const T &a, const T &b)
{
return (b != 0) ? std::fmod(a, b) : 0;
}
template<typename T> inline void min_max(const T &value, T &min, T &max)
{
min = math::min(value, min);
max = math::max(value, max);
}
template<typename T, BLI_ENABLE_IF((is_math_float_type<T>))>
inline T safe_divide(const T &a, const T &b)
{
return (b != 0) ? a / b : T(0.0f);
}
template<typename T, BLI_ENABLE_IF((is_math_float_type<T>))> inline T floor(const T &a)
{
return std::floor(a);
}
template<typename T, BLI_ENABLE_IF((is_math_float_type<T>))> inline T ceil(const T &a)
{
return std::ceil(a);
}
template<typename T, BLI_ENABLE_IF((is_math_float_type<T>))> inline T fract(const T &a)
{
return a - std::floor(a);
}
template<typename T, BLI_ENABLE_IF((is_math_float_type<T>))>
inline T interpolate(const T &a, const T &b, const T &t)
{
return a * (1 - t) + b * t;
}
template<typename T, BLI_ENABLE_IF((is_math_float_type<T>))>
inline T midpoint(const T &a, const T &b)
{
return (a + b) * T(0.5);
}
} // namespace blender::math

View File

@ -14,6 +14,10 @@
#include "BLI_utildefines.h"
#ifdef WITH_GMP
# include "BLI_math_mpq.hh"
#endif
namespace blender {
/* clang-format off */
@ -60,10 +64,10 @@ template<typename T> uint64_t vector_hash(const T &vec)
return result;
}
template<typename T> inline bool is_any_zero(const T &a)
template<typename T, int Size> inline bool is_any_zero(const vec_struct_base<T, Size> &a)
{
for (int i = 0; i < T::type_length; i++) {
if (a[i] == typename T::base_type(0)) {
for (int i = 0; i < Size; i++) {
if (a[i] == T(0)) {
return true;
}
}
@ -579,4 +583,13 @@ using double2 = vec_base<double, 2>;
using double3 = vec_base<double, 3>;
using double4 = vec_base<double, 4>;
template<typename T>
inline constexpr bool is_math_float_type = (std::is_floating_point_v<T>
#ifdef WITH_GMP
|| std::is_same_v<T, mpq_class>
#endif
);
template<typename T> inline constexpr bool is_math_integral_type = std::is_integral_v<T>;
} // namespace blender

View File

@ -15,10 +15,6 @@
#include "BLI_span.hh"
#include "BLI_utildefines.h"
#ifdef WITH_GMP
# include "BLI_math_mpq.hh"
#endif
namespace blender::math {
#ifndef NDEBUG
@ -33,277 +29,293 @@ namespace blender::math {
# define BLI_ASSERT_UNIT(v) (void)(v)
#endif
#define bT typename T::base_type
#ifdef WITH_GMP
# define BLI_ENABLE_IF_FLT_VEC(T) \
BLI_ENABLE_IF((std::is_floating_point_v<typename T::base_type> || \
std::is_same_v<typename T::base_type, mpq_class>))
#else
# define BLI_ENABLE_IF_FLT_VEC(T) BLI_ENABLE_IF((std::is_floating_point_v<typename T::base_type>))
#endif
#define BLI_ENABLE_IF_INT_VEC(T) BLI_ENABLE_IF((std::is_integral_v<typename T::base_type>))
template<typename T> inline bool is_zero(const T &a)
template<typename T, int Size> inline bool is_zero(const vec_base<T, Size> &a)
{
for (int i = 0; i < T::type_length; i++) {
if (a[i] != bT(0)) {
for (int i = 0; i < Size; i++) {
if (a[i] != T(0)) {
return false;
}
}
return true;
}
template<typename T> inline T abs(const T &a)
template<typename T, int Size> inline vec_base<T, Size> abs(const vec_base<T, Size> &a)
{
T result;
for (int i = 0; i < T::type_length; i++) {
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
result[i] = a[i] >= 0 ? a[i] : -a[i];
}
return result;
}
template<typename T> inline T min(const T &a, const T &b)
template<typename T, int Size>
inline vec_base<T, Size> min(const vec_base<T, Size> &a, const vec_base<T, Size> &b)
{
T result;
for (int i = 0; i < T::type_length; i++) {
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
result[i] = a[i] < b[i] ? a[i] : b[i];
}
return result;
}
template<typename T> inline T max(const T &a, const T &b)
template<typename T, int Size>
inline vec_base<T, Size> max(const vec_base<T, Size> &a, const vec_base<T, Size> &b)
{
T result;
for (int i = 0; i < T::type_length; i++) {
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
result[i] = a[i] > b[i] ? a[i] : b[i];
}
return result;
}
template<typename T> inline T clamp(const T &a, const T &min_v, const T &max_v)
template<typename T, int Size>
inline T clamp(const vec_base<T, Size> &a,
const vec_base<T, Size> &min,
const vec_base<T, Size> &max)
{
T result = a;
for (int i = 0; i < T::type_length; i++) {
CLAMP(result[i], min_v[i], max_v[i]);
vec_base<T, Size> result = a;
for (int i = 0; i < Size; i++) {
std::clamp(result[i], min[i], max[i]);
}
return result;
}
template<typename T> inline T clamp(const T &a, const bT &min_v, const bT &max_v)
template<typename T, int Size>
inline vec_base<T, Size> clamp(const vec_base<T, Size> &a, const T &min, const T &max)
{
T result = a;
for (int i = 0; i < T::type_length; i++) {
CLAMP(result[i], min_v, max_v);
vec_base<T, Size> result = a;
for (int i = 0; i < Size; i++) {
std::clamp(result[i], min, max);
}
return result;
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)> inline T mod(const T &a, const T &b)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> mod(const vec_base<T, Size> &a, const vec_base<T, Size> &b)
{
T result;
for (int i = 0; i < T::type_length; i++) {
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
BLI_assert(b[i] != 0);
result[i] = std::fmod(a[i], b[i]);
}
return result;
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)> inline T mod(const T &a, bT b)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> mod(const vec_base<T, Size> &a, const T &b)
{
BLI_assert(b != 0);
T result;
for (int i = 0; i < T::type_length; i++) {
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
result[i] = std::fmod(a[i], b);
}
return result;
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)> inline T safe_mod(const T &a, const T &b)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline T safe_mod(const vec_base<T, Size> &a, const vec_base<T, Size> &b)
{
T result;
for (int i = 0; i < T::type_length; i++) {
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
result[i] = (b[i] != 0) ? std::fmod(a[i], b[i]) : 0;
}
return result;
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)> inline T safe_mod(const T &a, bT b)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline T safe_mod(const vec_base<T, Size> &a, const T &b)
{
if (b == 0) {
return T(0.0f);
return vec_base<T, Size>(0);
}
T result;
for (int i = 0; i < T::type_length; i++) {
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
result[i] = std::fmod(a[i], b);
}
return result;
}
template<typename T> inline void min_max(const T &vector, T &min_vec, T &max_vec)
template<typename T, int Size>
inline void min_max(const vec_base<T, Size> &vector,
vec_base<T, Size> &min,
vec_base<T, Size> &max)
{
min_vec = min(vector, min_vec);
max_vec = max(vector, max_vec);
min = math::min(vector, min);
max = math::max(vector, max);
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)> inline T safe_divide(const T &a, const T &b)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> safe_divide(const vec_base<T, Size> &a, const vec_base<T, Size> &b)
{
T result;
for (int i = 0; i < T::type_length; i++) {
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
result[i] = (b[i] == 0) ? 0 : a[i] / b[i];
}
return result;
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)> inline T safe_divide(const T &a, const bT b)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> safe_divide(const vec_base<T, Size> &a, const T &b)
{
return (b != 0) ? a / b : T(0.0f);
return (b != 0) ? a / b : vec_base<T, Size>(0.0f);
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)> inline T floor(const T &a)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> floor(const vec_base<T, Size> &a)
{
T result;
for (int i = 0; i < T::type_length; i++) {
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
result[i] = std::floor(a[i]);
}
return result;
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)> inline T ceil(const T &a)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> ceil(const vec_base<T, Size> &a)
{
T result;
for (int i = 0; i < T::type_length; i++) {
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
result[i] = std::ceil(a[i]);
}
return result;
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)> inline T fract(const T &a)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> fract(const vec_base<T, Size> &a)
{
T result;
for (int i = 0; i < T::type_length; i++) {
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
result[i] = a[i] - std::floor(a[i]);
}
return result;
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)> inline bT dot(const T &a, const T &b)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline T dot(const vec_base<T, Size> &a, const vec_base<T, Size> &b)
{
bT result = a[0] * b[0];
for (int i = 1; i < T::type_length; i++) {
T result = a[0] * b[0];
for (int i = 1; i < Size; i++) {
result += a[i] * b[i];
}
return result;
}
template<typename T> inline bT length_manhattan(const T &a)
template<typename T, int Size> inline T length_manhattan(const vec_base<T, Size> &a)
{
bT result = std::abs(a[0]);
for (int i = 1; i < T::type_length; i++) {
T result = std::abs(a[0]);
for (int i = 1; i < Size; i++) {
result += std::abs(a[i]);
}
return result;
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)> inline bT length_squared(const T &a)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline T length_squared(const vec_base<T, Size> &a)
{
return dot(a, a);
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)> inline bT length(const T &a)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline T length(const vec_base<T, Size> &a)
{
return std::sqrt(length_squared(a));
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)> inline bT distance_manhattan(const T &a, const T &b)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline T distance_manhattan(const vec_base<T, Size> &a, const vec_base<T, Size> &b)
{
return length_manhattan(a - b);
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)> inline bT distance_squared(const T &a, const T &b)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline T distance_squared(const vec_base<T, Size> &a, const vec_base<T, Size> &b)
{
return length_squared(a - b);
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)> inline bT distance(const T &a, const T &b)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline T distance(const vec_base<T, Size> &a, const vec_base<T, Size> &b)
{
return length(a - b);
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)> inline T reflect(const T &incident, const T &normal)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> reflect(const vec_base<T, Size> &incident,
const vec_base<T, Size> &normal)
{
BLI_ASSERT_UNIT(normal);
return incident - 2.0 * dot(normal, incident) * normal;
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)>
inline T refract(const T &incident, const T &normal, const bT eta)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> refract(const vec_base<T, Size> &incident,
const vec_base<T, Size> &normal,
const T &eta)
{
float dot_ni = dot(normal, incident);
float k = 1.0f - eta * eta * (1.0f - dot_ni * dot_ni);
if (k < 0.0f) {
return T(0.0f);
return vec_base<T, Size>(0.0f);
}
return eta * incident - (eta * dot_ni + sqrt(k)) * normal;
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)> inline T project(const T &p, const T &v_proj)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> project(const vec_base<T, Size> &p, const vec_base<T, Size> &v_proj)
{
if (UNLIKELY(is_zero(v_proj))) {
return T(0.0f);
return vec_base<T, Size>(0.0f);
}
return v_proj * (dot(p, v_proj) / dot(v_proj, v_proj));
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)>
inline T normalize_and_get_length(const T &v, bT &out_length)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> normalize_and_get_length(const vec_base<T, Size> &v, T &out_length)
{
out_length = length_squared(v);
/* A larger value causes normalize errors in a scaled down models with camera extreme close. */
constexpr bT threshold = std::is_same_v<bT, double> ? 1.0e-70 : 1.0e-35f;
constexpr T threshold = std::is_same_v<T, double> ? 1.0e-70 : 1.0e-35f;
if (out_length > threshold) {
out_length = sqrt(out_length);
return v / out_length;
}
/* Either the vector is small or one of it's values contained `nan`. */
out_length = 0.0;
return T(0.0);
return vec_base<T, Size>(0.0);
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)> inline T normalize(const T &v)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> normalize(const vec_base<T, Size> &v)
{
bT len;
T len;
return normalize_and_get_length(v, len);
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T), BLI_ENABLE_IF((T::type_length == 3))>
inline T cross(const T &a, const T &b)
template<typename T, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, 3> cross(const vec_base<T, 3> &a, const vec_base<T, 3> &b)
{
return {a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x};
}
template<typename T,
BLI_ENABLE_IF((std::is_same_v<bT, float>)),
BLI_ENABLE_IF((T::type_length == 3))>
inline T cross_high_precision(const T &a, const T &b)
inline vec_base<float, 3> cross_high_precision(const vec_base<float, 3> &a,
const vec_base<float, 3> &b)
{
return {(float)((double)a.y * b.z - (double)a.z * b.y),
(float)((double)a.z * b.x - (double)a.x * b.z),
(float)((double)a.x * b.y - (double)a.y * b.x)};
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T), BLI_ENABLE_IF((T::type_length == 3))>
inline T cross_poly(Span<T> poly)
template<typename T, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, 3> cross_poly(Span<vec_base<T, 3>> poly)
{
/* Newell's Method. */
int nv = static_cast<int>(poly.size());
if (nv < 3) {
return T(0, 0, 0);
return vec_base<T, 3>(0, 0, 0);
}
const T *v_prev = &poly[nv - 1];
const T *v_curr = &poly[0];
T n(0, 0, 0);
const vec_base<T, 3> *v_prev = &poly[nv - 1];
const vec_base<T, 3> *v_curr = &poly[0];
vec_base<T, 3> n(0, 0, 0);
for (int i = 0; i < nv;) {
n[0] = n[0] + ((*v_prev)[1] - (*v_curr)[1]) * ((*v_prev)[2] + (*v_curr)[2]);
n[1] = n[1] + ((*v_prev)[2] - (*v_curr)[2]) * ((*v_prev)[0] + (*v_curr)[0]);
@ -317,25 +329,31 @@ inline T cross_poly(Span<T> poly)
return n;
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)> inline T interpolate(const T &a, const T &b, bT t)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> interpolate(const vec_base<T, Size> &a,
const vec_base<T, Size> &b,
const T &t)
{
return a * (1 - t) + b * t;
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)> inline T midpoint(const T &a, const T &b)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> midpoint(const vec_base<T, Size> &a, const vec_base<T, Size> &b)
{
return (a + b) * 0.5;
}
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)>
inline T faceforward(const T &vector, const T &incident, const T &reference)
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> faceforward(const vec_base<T, Size> &vector,
const vec_base<T, Size> &incident,
const vec_base<T, Size> &reference)
{
return (dot(reference, incident) < 0) ? vector : -vector;
}
template<typename T> inline int dominant_axis(const T &a)
template<typename T> inline int dominant_axis(const vec_base<T, 3> &a)
{
T b = abs(a);
vec_base<T, 3> b = abs(a);
return ((b.x > b.y) ? ((b.x > b.z) ? 0 : 2) : ((b.y > b.z) ? 1 : 2));
}
@ -348,14 +366,13 @@ template<typename T> struct isect_result {
LINE_LINE_EXACT = 1,
LINE_LINE_CROSS = 2,
} kind;
bT lambda;
typename T::base_type lambda;
};
template<typename T, BLI_ENABLE_IF_FLT_VEC(T)>
isect_result<T> isect_seg_seg(const T &v1, const T &v2, const T &v3, const T &v4);
#undef BLI_ENABLE_IF_FLT_VEC
#undef BLI_ENABLE_IF_INT_VEC
#undef bT
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
isect_result<vec_base<T, Size>> isect_seg_seg(const vec_base<T, Size> &v1,
const vec_base<T, Size> &v2,
const vec_base<T, Size> &v3,
const vec_base<T, Size> &v4);
} // namespace blender::math

View File

@ -220,6 +220,7 @@ set(SRC
BLI_map.hh
BLI_map_slots.hh
BLI_math.h
BLI_math_base.hh
BLI_math_base.h
BLI_math_base_safe.h
BLI_math_bits.h

View File

@ -1691,7 +1691,7 @@ void fill_crossdata_for_intersect(const FatCo<T> &curco,
BLI_assert(se_vcva->vert == vc && se_vcva->next->vert == va);
BLI_assert(se_vcvb->vert == vc && se_vcvb->next->vert == vb);
UNUSED_VARS_NDEBUG(vc);
auto isect = isect_seg_seg<vec2<T>>(va->co.exact, vb->co.exact, curco.exact, v2->co.exact);
auto isect = isect_seg_seg(va->co.exact, vb->co.exact, curco.exact, v2->co.exact);
T &lambda = isect.lambda;
switch (isect.kind) {
case isect_result<vec2<T>>::LINE_LINE_CROSS: {
@ -2556,7 +2556,7 @@ template<typename T> void detect_holes(CDT_state<T> *cdt_state)
if (e->symedges[0].face->visit_index == e->symedges[1].face->visit_index) {
continue; /* Don't count hits on edges between faces in same region. */
}
auto isect = isect_seg_seg<vec2<T>>(ray_end.exact,
auto isect = isect_seg_seg(ray_end.exact,
mid.exact,
e->symedges[0].vert->co.exact,
e->symedges[1].vert->co.exact);

View File

@ -3,6 +3,10 @@
#include "testing/testing.h"
#include "BLI_math.h"
#include "BLI_math_base.hh"
#include "BLI_math_vector.hh"
namespace blender::tests {
/* In tests below, when we are using -1.0f as max_diff value, we actually turn the function into a
* pure-ULP one. */
@ -131,3 +135,20 @@ TEST(math_base, FloorPowerOf10)
EXPECT_NEAR(floor_power_of_10(100.1f), 100.0f, 1e-4f);
EXPECT_NEAR(floor_power_of_10(99.9f), 10.0f, 1e-4f);
}
TEST(math_base, MinVectorAndFloat)
{
EXPECT_EQ(math::min(1.0f, 2.0f), 1.0f);
}
TEST(math_base, ClampInt)
{
EXPECT_EQ(math::clamp(111, -50, 101), 101);
}
TEST(math_base, Midpoint)
{
EXPECT_NEAR(math::midpoint(100.0f, 200.0f), 150.0f, 1e-4f);
}
} // namespace blender::tests