Cleanup: Code comments in tree.h

Differential Revision: https://developer.blender.org/D16751
This commit is contained in:
Alaska 2022-12-12 12:32:11 +01:00 committed by Weizhen Huang
parent 9c0d822737
commit 3e1152428d
1 changed files with 38 additions and 39 deletions

View File

@ -22,16 +22,15 @@
CCL_NAMESPACE_BEGIN
/* TODO: this seems like a relative expensive computation, and we can make it a lot cheaper
* by using a bounding sphere instead of a bounding box. This will be more inaccurate, but it
* might be fine when used along with the adaptive splitting. */
/* TODO: this seems like a relative expensive computation. We can make it a lot cheaper by using a
* bounding sphere instead of a bounding box, but this will reduce the accuracy sometimes. */
ccl_device float light_tree_cos_bounding_box_angle(const BoundingBox bbox,
const float3 P,
const float3 point_to_centroid)
{
if (P.x > bbox.min.x && P.y > bbox.min.y && P.z > bbox.min.z && P.x < bbox.max.x &&
P.y < bbox.max.y && P.z < bbox.max.z) {
/* If P is inside the bbox, `theta_u` covers the whole sphere */
/* If P is inside the bbox, `theta_u` covers the whole sphere. */
return -1.0f;
}
float cos_theta_u = 1.0f;
@ -53,7 +52,7 @@ ccl_device_forceinline float sin_from_cos(const float c)
return safe_sqrtf(1.0f - sqr(c));
}
/* Compute vector v as in Fig .8. P_v is the corresponding point along the ray ccl_device float3 */
/* Compute vector v as in Fig .8. P_v is the corresponding point along the ray. */
ccl_device float3 compute_v(
const float3 centroid, const float3 P, const float3 D, const float3 bcone_axis, const float t)
{
@ -95,12 +94,12 @@ ccl_device void light_tree_importance(const float3 N_or_D,
const float sin_theta_u = sin_from_cos(cos_theta_u);
/* cos(theta_i') in the paper, omitted for volume */
/* cos(theta_i') in the paper, omitted for volume. */
float cos_min_incidence_angle = 1.0f;
float cos_max_incidence_angle = 1.0f;
/* when sampling the light tree for the second time in `shade_volume.h` and when query the pdf in
* `sample.h` */
/* When sampling the light tree for the second time in `shade_volume.h` and when query the pdf in
* `sample.h`. */
const bool in_volume = is_zero(N_or_D);
if (!in_volume_segment && !in_volume) {
const float3 N = N_or_D;
@ -116,7 +115,7 @@ ccl_device void light_tree_importance(const float3 N_or_D,
/* If the node is guaranteed to be behind the surface we're sampling, and the surface is
* opaque, then we can give the node an importance of 0 as it contributes nothing to the
* surface. This is more accurate than the bbox test if we are calculating the importance of
* an emitter with radius */
* an emitter with radius. */
if (!has_transmission && cos_min_incidence_angle < 0) {
return;
}
@ -133,8 +132,8 @@ ccl_device void light_tree_importance(const float3 N_or_D,
float cos_theta_o, sin_theta_o;
fast_sincosf(bcone.theta_o, &sin_theta_o, &cos_theta_o);
/* minimum angle an emitters axis would form with the direction to the shading point,
* cos(theta') in the paper */
/* Minimum angle an emitters axis would form with the direction to the shading point,
* cos(theta') in the paper. */
float cos_min_outgoing_angle;
if ((cos_theta >= cos_theta_u) || (cos_theta_minus_theta_u >= cos_theta_o)) {
/* theta - theta_o - theta_u <= 0 */
@ -151,7 +150,7 @@ ccl_device void light_tree_importance(const float3 N_or_D,
sin_theta_minus_theta_u * sin_theta_o;
}
else {
/* cluster invisible */
/* Cluster is invisible. */
return;
}
@ -200,14 +199,14 @@ ccl_device bool compute_emitter_centroid_and_dir(KernelGlobals kg,
dir = klight->spot.dir;
break;
case LIGHT_POINT:
/* Disk-oriented normal */
/* Disk-oriented normal. */
dir = safe_normalize(P - centroid);
break;
case LIGHT_AREA:
dir = klight->area.dir;
break;
case LIGHT_BACKGROUND:
/* Aarbitrary centroid and direction */
/* Arbitrary centroid and direction. */
centroid = make_float3(0.0f, 0.0f, 1.0f);
dir = make_float3(0.0f, 0.0f, -1.0f);
return !in_volume_segment;
@ -231,7 +230,7 @@ ccl_device bool compute_emitter_centroid_and_dir(KernelGlobals kg,
dir = -safe_normalize(cross(vertices[1] - vertices[0], vertices[2] - vertices[0]));
}
else {
/* Double sided: any vector in the plane. */
/* Double-sided: any vector in the plane. */
dir = safe_normalize(vertices[0] - vertices[1]);
}
}
@ -269,9 +268,9 @@ ccl_device void light_tree_emitter_importance(KernelGlobals kg,
if (in_volume_segment) {
const float3 D = N_or_D;
/* Closest point */
/* Closest point. */
P_c = P + dot(centroid - P, D) * D;
/* minimal distance of the ray to the cluster */
/* Minimal distance of the ray to the cluster. */
distance.x = len(centroid - P_c);
distance.y = distance.x;
point_to_centroid = -compute_v(centroid, P, D, bcone.axis, t);
@ -284,7 +283,7 @@ ccl_device void light_tree_emitter_importance(KernelGlobals kg,
if (prim_id < 0) {
const ccl_global KernelLight *klight = &kernel_data_fetch(lights, ~prim_id);
switch (klight->type) {
/* Function templates only modifies cos_theta_u when in_volume_segment = true */
/* Function templates only modifies cos_theta_u when in_volume_segment = true. */
case LIGHT_SPOT:
is_visible = spot_light_tree_parameters<in_volume_segment>(
klight, centroid, P_c, cos_theta_u, distance, point_to_centroid);
@ -310,7 +309,7 @@ ccl_device void light_tree_emitter_importance(KernelGlobals kg,
return;
}
}
else { /* mesh light */
else { /* Mesh light. */
is_visible = triangle_light_tree_parameters<in_volume_segment>(
kg, kemitter, centroid, P_c, N_or_D, bcone, cos_theta_u, distance, point_to_centroid);
}
@ -346,7 +345,7 @@ ccl_device void light_tree_node_importance(KernelGlobals kg,
max_importance = 0.0f;
min_importance = 0.0f;
if (knode->num_prims == 1) {
/* At a leaf node with only one emitter */
/* At a leaf node with only one emitter. */
light_tree_emitter_importance<in_volume_segment>(
kg, P, N_or_D, t, has_transmission, -knode->child_index, max_importance, min_importance);
}
@ -358,7 +357,7 @@ ccl_device void light_tree_node_importance(KernelGlobals kg,
float cos_theta_u;
float distance;
if (knode->bit_trail == 1) {
/* distant light node */
/* Distant light node. */
if (in_volume_segment) {
return;
}
@ -372,7 +371,7 @@ ccl_device void light_tree_node_importance(KernelGlobals kg,
if (in_volume_segment) {
const float3 D = N_or_D;
const float3 closest_point = P + dot(centroid - P, D) * D;
/* minimal distance of the ray to the cluster */
/* Minimal distance of the ray to the cluster. */
distance = len(centroid - closest_point);
point_to_centroid = -compute_v(centroid, P, D, bcone.axis, t);
cos_theta_u = light_tree_cos_bounding_box_angle(bbox, closest_point, point_to_centroid);
@ -393,7 +392,7 @@ ccl_device void light_tree_node_importance(KernelGlobals kg,
point_to_centroid = normalize_len(centroid - P, &distance);
cos_theta_u = light_tree_cos_bounding_box_angle(bbox, P, point_to_centroid);
}
/* clamp distance to half the radius of the cluster when splitting is disabled */
/* Clamp distance to half the radius of the cluster when splitting is disabled. */
distance = fmaxf(0.5f * len(centroid - bbox.max), distance);
}
/* TODO: currently max_distance = min_distance, max_importance = min_importance for the
@ -436,8 +435,8 @@ ccl_device void sample_resevoir(const int current_index,
return;
}
/* pick an emitter from a leaf node using resevoir sampling, keep two reservoirs for upper and
* lower bounds */
/* Pick an emitter from a leaf node using resevoir sampling, keep two reservoirs for upper and
* lower bounds. */
template<bool in_volume_segment>
ccl_device int light_tree_cluster_select_emitter(KernelGlobals kg,
ccl_private float &rand,
@ -452,11 +451,11 @@ ccl_device int light_tree_cluster_select_emitter(KernelGlobals kg,
float total_importance[2] = {0.0f, 0.0f};
int selected_index = -1;
/* Mark emitters with zero importance. Used for resevoir when total minimum importance = 0 */
/* Mark emitters with zero importance. Used for resevoir when total minimum importance = 0. */
kernel_assert(knode->num_prims <= sizeof(uint) * 8);
uint has_importance = 0;
const bool sample_max = (rand > 0.5f); /* sampling using the maximum importance */
const bool sample_max = (rand > 0.5f); /* Sampling using the maximum importance. */
rand = rand * 2.0f - float(sample_max);
for (int i = 0; i < knode->num_prims; i++) {
@ -485,7 +484,7 @@ ccl_device int light_tree_cluster_select_emitter(KernelGlobals kg,
}
if (total_importance[1] == 0.0f) {
/* uniformly sample emitters with positive maximum importance */
/* Uniformly sample emitters with positive maximum importance. */
if (sample_max) {
selected_importance[1] = 1.0f;
total_importance[1] = float(popcount(has_importance));
@ -540,7 +539,7 @@ ccl_device bool get_left_probability(KernelGlobals kg,
}
const float total_min_importance = min_left_importance + min_right_importance;
/* average two probabilities of picking the left child node using lower and upper bounds */
/* Average two probabilities of picking the left child node using lower and upper bounds. */
const float probability_max = max_left_importance / total_max_importance;
const float probability_min = total_min_importance > 0 ?
min_left_importance / total_min_importance :
@ -572,28 +571,28 @@ ccl_device_noinline bool light_tree_sample(KernelGlobals kg,
float pdf_emitter_from_leaf = 1.0f;
int selected_light = -1;
int node_index = 0; /* root node */
int node_index = 0; /* Root node. */
/* Traverse the light tree until a leaf node is reached. */
while (true) {
const ccl_global KernelLightTreeNode *knode = &kernel_data_fetch(light_tree_nodes, node_index);
if (knode->child_index <= 0) {
/* At a leaf node, we pick an emitter */
/* At a leaf node, we pick an emitter. */
selected_light = light_tree_cluster_select_emitter<in_volume_segment>(
kg, randv, P, N_or_D, t, has_transmission, knode, &pdf_emitter_from_leaf);
break;
}
/* At an interior node, the left child is directly after the parent,
* while the right child is stored as the child index. */
/* At an interior node, the left child is directly after the parent, while the right child is
* stored as the child index. */
const int left_index = node_index + 1;
const int right_index = knode->child_index;
float left_prob;
if (!get_left_probability<in_volume_segment>(
kg, P, N_or_D, t, has_transmission, left_index, right_index, left_prob)) {
return false; /* both child nodes have zero importance */
return false; /* Both child nodes have zero importance. */
}
float discard;
@ -607,7 +606,7 @@ ccl_device_noinline bool light_tree_sample(KernelGlobals kg,
return false;
}
/* Sample a point on the chosen emitter */
/* Sample a point on the chosen emitter. */
ccl_global const KernelLightTreeEmitter *kemitter = &kernel_data_fetch(light_tree_emitters,
selected_light);
@ -650,7 +649,7 @@ ccl_device float light_tree_pdf(
KernelGlobals kg, const float3 P, const float3 N, const int path_flag, const int prim)
{
const bool has_transmission = (path_flag & PATH_RAY_MIS_HAD_TRANSMISSION);
/* Target emitter info */
/* Target emitter info. */
const int target_emitter = (prim >= 0) ? kernel_data_fetch(triangle_to_tree, prim) :
kernel_data_fetch(light_to_tree, ~prim);
ccl_global const KernelLightTreeEmitter *kemitter = &kernel_data_fetch(light_tree_emitters,
@ -659,11 +658,11 @@ ccl_device float light_tree_pdf(
ccl_global const KernelLightTreeNode *kleaf = &kernel_data_fetch(light_tree_nodes, target_leaf);
uint bit_trail = kleaf->bit_trail;
int node_index = 0; /* root node */
int node_index = 0; /* Root node. */
float pdf = 1.0f;
/* Traverse the light tree until we reach the target leaf node */
/* Traverse the light tree until we reach the target leaf node. */
while (true) {
const ccl_global KernelLightTreeNode *knode = &kernel_data_fetch(light_tree_nodes, node_index);
@ -671,7 +670,7 @@ ccl_device float light_tree_pdf(
break;
}
/* Interior node */
/* Interior node. */
const int left_index = node_index + 1;
const int right_index = knode->child_index;