Simulation: move initial simulation code from bf_blenkernel to bf_simulation

I removed bf_blenkernel from `nodes/CMakeLists.txt` again (added it yesterday),
because now this was causing me unresolved symbol errors... Without it, cmake
seems to link the libraries bf_simulation, bf_blenkernel and bf_nodes in the right
order. Not sure if that is just luck or if it is guaranteed.

It was possible to fix the issue by using cmakes `LINK_INTERFACE_MULTIPLICITY`,
but that is probably bad style.
This commit is contained in:
Jacques Lucke 2020-07-17 13:47:57 +02:00
parent 9582797d4b
commit 3ef59121a4
5 changed files with 719 additions and 638 deletions

View File

@ -61,9 +61,7 @@
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_query.h"
extern "C" {
void WM_clipboard_text_set(const char *buf, bool selection);
}
#include "SIM_simulation_update.hh"
static void simulation_init_data(ID *id)
{
@ -209,640 +207,7 @@ void *BKE_simulation_add(Main *bmain, const char *name)
return simulation;
}
namespace blender::bke {
static void ensure_attributes_exist(ParticleSimulationState *state)
{
if (CustomData_get_layer_named(&state->attributes, CD_PROP_FLOAT3, "Position") == nullptr) {
CustomData_add_layer_named(
&state->attributes, CD_PROP_FLOAT3, CD_CALLOC, nullptr, state->tot_particles, "Position");
}
if (CustomData_get_layer_named(&state->attributes, CD_PROP_FLOAT3, "Velocity") == nullptr) {
CustomData_add_layer_named(
&state->attributes, CD_PROP_FLOAT3, CD_CALLOC, nullptr, state->tot_particles, "Velocity");
}
if (CustomData_get_layer_named(&state->attributes, CD_PROP_INT32, "ID") == nullptr) {
CustomData_add_layer_named(
&state->attributes, CD_PROP_INT32, CD_CALLOC, nullptr, state->tot_particles, "ID");
}
}
static void copy_states_to_cow(Simulation *simulation_orig, Simulation *simulation_cow)
{
BKE_simulation_state_remove_all(simulation_cow);
simulation_cow->current_frame = simulation_orig->current_frame;
LISTBASE_FOREACH (SimulationState *, state_orig, &simulation_orig->states) {
switch ((eSimulationStateType)state_orig->type) {
case SIM_STATE_TYPE_PARTICLES: {
ParticleSimulationState *particle_state_orig = (ParticleSimulationState *)state_orig;
ParticleSimulationState *particle_state_cow = (ParticleSimulationState *)
BKE_simulation_state_add(simulation_cow, SIM_STATE_TYPE_PARTICLES, state_orig->name);
particle_state_cow->tot_particles = particle_state_orig->tot_particles;
CustomData_copy(&particle_state_orig->attributes,
&particle_state_cow->attributes,
CD_MASK_ALL,
CD_DUPLICATE,
particle_state_orig->tot_particles);
break;
}
}
}
}
static Map<const fn::MFOutputSocket *, std::string> deduplicate_attribute_nodes(
fn::MFNetwork &network,
nodes::MFNetworkTreeMap &network_map,
const nodes::DerivedNodeTree &tree)
{
Span<const nodes::DNode *> attribute_dnodes = tree.nodes_by_type(
"SimulationNodeParticleAttribute");
uint amount = attribute_dnodes.size();
if (amount == 0) {
return {};
}
Vector<fn::MFInputSocket *> name_sockets;
for (const nodes::DNode *dnode : attribute_dnodes) {
fn::MFInputSocket &name_socket = network_map.lookup_dummy(dnode->input(0));
name_sockets.append(&name_socket);
}
fn::MFNetworkEvaluator network_fn{{}, name_sockets.as_span()};
fn::MFParamsBuilder params{network_fn, 1};
Array<std::string> attribute_names{amount, NoInitialization()};
for (uint i : IndexRange(amount)) {
params.add_uninitialized_single_output(
fn::GMutableSpan(fn::CPPType_string, attribute_names.data() + i, 1));
}
fn::MFContextBuilder context;
/* Todo: Check that the names don't depend on dummy nodes. */
network_fn.call({0}, params, context);
Map<std::pair<std::string, fn::MFDataType>, Vector<fn::MFNode *>>
attribute_nodes_by_name_and_type;
for (uint i : IndexRange(amount)) {
attribute_nodes_by_name_and_type
.lookup_or_add_default({attribute_names[i], name_sockets[i]->node().output(0).data_type()})
.append(&name_sockets[i]->node());
}
Map<const fn::MFOutputSocket *, std::string> attribute_inputs;
for (auto item : attribute_nodes_by_name_and_type.items()) {
StringRef attribute_name = item.key.first;
fn::MFDataType data_type = item.key.second;
Span<fn::MFNode *> nodes = item.value;
fn::MFOutputSocket &new_attribute_socket = network.add_input(
"Attribute '" + attribute_name + "'", data_type);
for (fn::MFNode *node : nodes) {
network.relink(node->output(0), new_attribute_socket);
}
network.remove(nodes);
attribute_inputs.add_new(&new_attribute_socket, attribute_name);
}
return attribute_inputs;
}
class CustomDataAttributesRef {
private:
Vector<void *> buffers_;
uint size_;
std::unique_ptr<fn::AttributesInfo> info_;
public:
CustomDataAttributesRef(CustomData &custom_data, uint size)
{
fn::AttributesInfoBuilder builder;
for (const CustomDataLayer &layer : Span(custom_data.layers, custom_data.totlayer)) {
buffers_.append(layer.data);
switch (layer.type) {
case CD_PROP_INT32: {
builder.add<int32_t>(layer.name, 0);
break;
}
case CD_PROP_FLOAT3: {
builder.add<float3>(layer.name, {0, 0, 0});
break;
}
}
}
info_ = std::make_unique<fn::AttributesInfo>(builder);
size_ = size;
}
operator fn::MutableAttributesRef()
{
return fn::MutableAttributesRef(*info_, buffers_, size_);
}
operator fn::AttributesRef() const
{
return fn::AttributesRef(*info_, buffers_, size_);
}
};
static std::string dnode_to_path(const nodes::DNode &dnode)
{
std::string path;
for (const nodes::DParentNode *parent = dnode.parent(); parent; parent = parent->parent()) {
path = parent->node_ref().name() + "/" + path;
}
path = path + dnode.name();
return path;
}
static void remove_unused_states(Simulation *simulation, const VectorSet<std::string> &state_names)
{
LISTBASE_FOREACH_MUTABLE (SimulationState *, state, &simulation->states) {
if (!state_names.contains(state->name)) {
BKE_simulation_state_remove(simulation, state);
}
}
}
static void reset_states(Simulation *simulation)
{
LISTBASE_FOREACH (SimulationState *, state, &simulation->states) {
switch ((eSimulationStateType)state->type) {
case SIM_STATE_TYPE_PARTICLES: {
ParticleSimulationState *particle_state = (ParticleSimulationState *)state;
CustomData_free(&particle_state->attributes, particle_state->tot_particles);
particle_state->tot_particles = 0;
break;
}
}
}
}
static SimulationState *try_find_state_by_name(Simulation *simulation, StringRef name)
{
LISTBASE_FOREACH (SimulationState *, state, &simulation->states) {
if (state->name == name) {
return state;
}
}
return nullptr;
}
static void add_missing_particle_states(Simulation *simulation, Span<std::string> state_names)
{
for (StringRefNull name : state_names) {
SimulationState *state = try_find_state_by_name(simulation, name);
if (state != nullptr) {
BLI_assert(state->type == SIM_STATE_TYPE_PARTICLES);
continue;
}
BKE_simulation_state_add(simulation, SIM_STATE_TYPE_PARTICLES, name.c_str());
}
}
static void reinitialize_empty_simulation_states(Simulation *simulation,
const nodes::DerivedNodeTree &tree)
{
VectorSet<std::string> state_names;
for (const nodes::DNode *dnode : tree.nodes_by_type("SimulationNodeParticleSimulation")) {
state_names.add(dnode_to_path(*dnode));
}
remove_unused_states(simulation, state_names);
reset_states(simulation);
add_missing_particle_states(simulation, state_names);
}
static void update_simulation_state_list(Simulation *simulation,
const nodes::DerivedNodeTree &tree)
{
VectorSet<std::string> state_names;
for (const nodes::DNode *dnode : tree.nodes_by_type("SimulationNodeParticleSimulation")) {
state_names.add(dnode_to_path(*dnode));
}
remove_unused_states(simulation, state_names);
add_missing_particle_states(simulation, state_names);
}
class ParticleFunctionInput {
public:
virtual ~ParticleFunctionInput() = default;
virtual void add_input(fn::AttributesRef attributes,
fn::MFParamsBuilder &params,
ResourceCollector &resources) const = 0;
};
class ParticleFunction {
private:
const fn::MultiFunction *global_fn_;
const fn::MultiFunction *per_particle_fn_;
Array<const ParticleFunctionInput *> global_inputs_;
Array<const ParticleFunctionInput *> per_particle_inputs_;
Array<bool> output_is_global_;
Vector<uint> global_output_indices_;
Vector<uint> per_particle_output_indices_;
Vector<fn::MFDataType> output_types_;
Vector<StringRefNull> output_names_;
friend class ParticleFunctionEvaluator;
public:
ParticleFunction(const fn::MultiFunction *global_fn,
const fn::MultiFunction *per_particle_fn,
Span<const ParticleFunctionInput *> global_inputs,
Span<const ParticleFunctionInput *> per_particle_inputs,
Span<bool> output_is_global)
: global_fn_(global_fn),
per_particle_fn_(per_particle_fn),
global_inputs_(global_inputs),
per_particle_inputs_(per_particle_inputs),
output_is_global_(output_is_global)
{
for (uint i : output_is_global_.index_range()) {
if (output_is_global_[i]) {
uint param_index = global_inputs_.size() + global_output_indices_.size();
fn::MFParamType param_type = global_fn_->param_type(param_index);
BLI_assert(param_type.is_output());
output_types_.append(param_type.data_type());
output_names_.append(global_fn_->param_name(param_index));
global_output_indices_.append(i);
}
else {
uint param_index = per_particle_inputs_.size() + per_particle_output_indices_.size();
fn::MFParamType param_type = per_particle_fn_->param_type(param_index);
BLI_assert(param_type.is_output());
output_types_.append(param_type.data_type());
output_names_.append(per_particle_fn_->param_name(param_index));
per_particle_output_indices_.append(i);
}
}
}
};
class ParticleFunctionEvaluator {
private:
ResourceCollector resources_;
const ParticleFunction &particle_fn_;
IndexMask mask_;
fn::MFContextBuilder global_context_;
fn::MFContextBuilder per_particle_context_;
fn::AttributesRef particle_attributes_;
Vector<void *> outputs_;
bool is_computed_ = false;
public:
ParticleFunctionEvaluator(const ParticleFunction &particle_fn,
IndexMask mask,
fn::AttributesRef particle_attributes)
: particle_fn_(particle_fn),
mask_(mask),
particle_attributes_(particle_attributes),
outputs_(particle_fn_.output_types_.size(), nullptr)
{
}
~ParticleFunctionEvaluator()
{
for (uint output_index : outputs_.index_range()) {
void *buffer = outputs_[output_index];
fn::MFDataType data_type = particle_fn_.output_types_[output_index];
BLI_assert(data_type.is_single()); /* For now. */
const fn::CPPType &type = data_type.single_type();
if (particle_fn_.output_is_global_[output_index]) {
type.destruct(buffer);
}
else {
type.destruct_indices(outputs_[0], mask_);
}
}
}
void compute()
{
BLI_assert(!is_computed_);
this->compute_globals();
this->compute_per_particle();
is_computed_ = true;
}
template<typename T> fn::VSpan<T> get(uint output_index, StringRef expected_name) const
{
return this->get(output_index, expected_name).typed<T>();
}
fn::GVSpan get(uint output_index, StringRef expected_name) const
{
#ifdef DEBUG
StringRef real_name = particle_fn_.output_names_[output_index];
BLI_assert(expected_name == real_name);
BLI_assert(is_computed_);
#endif
UNUSED_VARS_NDEBUG(expected_name);
const void *buffer = outputs_[output_index];
const fn::CPPType &type = particle_fn_.output_types_[output_index].single_type();
if (particle_fn_.output_is_global_[output_index]) {
return fn::GVSpan::FromSingleWithMaxSize(type, buffer);
}
else {
return fn::GVSpan(fn::GSpan(type, buffer, mask_.min_array_size()));
}
}
private:
void compute_globals()
{
if (particle_fn_.global_fn_ == nullptr) {
return;
}
fn::MFParamsBuilder params(*particle_fn_.global_fn_, mask_.min_array_size());
/* Add input parameters. */
for (const ParticleFunctionInput *input : particle_fn_.global_inputs_) {
input->add_input(particle_attributes_, params, resources_);
}
/* Add output parameters. */
for (uint output_index : particle_fn_.global_output_indices_) {
fn::MFDataType data_type = particle_fn_.output_types_[output_index];
BLI_assert(data_type.is_single()); /* For now. */
const fn::CPPType &type = data_type.single_type();
void *buffer = resources_.linear_allocator().allocate(type.size(), type.alignment());
params.add_uninitialized_single_output(fn::GMutableSpan(type, buffer, 1));
outputs_[output_index] = buffer;
}
particle_fn_.global_fn_->call({0}, params, global_context_);
}
void compute_per_particle()
{
if (particle_fn_.per_particle_fn_ == nullptr) {
return;
}
fn::MFParamsBuilder params(*particle_fn_.per_particle_fn_, mask_.min_array_size());
/* Add input parameters. */
for (const ParticleFunctionInput *input : particle_fn_.per_particle_inputs_) {
input->add_input(particle_attributes_, params, resources_);
}
/* Add output parameters. */
for (uint output_index : particle_fn_.per_particle_output_indices_) {
fn::MFDataType data_type = particle_fn_.output_types_[output_index];
BLI_assert(data_type.is_single()); /* For now. */
const fn::CPPType &type = data_type.single_type();
void *buffer = resources_.linear_allocator().allocate(type.size() * mask_.min_array_size(),
type.alignment());
params.add_uninitialized_single_output(
fn::GMutableSpan(type, buffer, mask_.min_array_size()));
outputs_[output_index] = buffer;
}
particle_fn_.per_particle_fn_->call(mask_, params, global_context_);
}
};
class ParticleAttributeInput : public ParticleFunctionInput {
private:
std::string attribute_name_;
const fn::CPPType &attribute_type_;
public:
ParticleAttributeInput(std::string attribute_name, const fn::CPPType &attribute_type)
: attribute_name_(std::move(attribute_name)), attribute_type_(attribute_type)
{
}
void add_input(fn::AttributesRef attributes,
fn::MFParamsBuilder &params,
ResourceCollector &UNUSED(resources)) const override
{
std::optional<fn::GSpan> span = attributes.try_get(attribute_name_, attribute_type_);
if (span.has_value()) {
params.add_readonly_single_input(*span);
}
else {
params.add_readonly_single_input(fn::GVSpan::FromDefault(attribute_type_));
}
}
};
static const ParticleFunction *create_particle_function_for_inputs(
Span<const fn::MFInputSocket *> sockets_to_compute,
ResourceCollector &resources,
const Map<const fn::MFOutputSocket *, std::string> &attribute_inputs)
{
BLI_assert(sockets_to_compute.size() >= 1);
const fn::MFNetwork &network = sockets_to_compute[0]->node().network();
VectorSet<const fn::MFOutputSocket *> dummy_deps;
VectorSet<const fn::MFInputSocket *> unlinked_input_deps;
network.find_dependencies(sockets_to_compute, dummy_deps, unlinked_input_deps);
BLI_assert(unlinked_input_deps.size() == 0);
Vector<const ParticleFunctionInput *> per_particle_inputs;
for (const fn::MFOutputSocket *socket : dummy_deps) {
const std::string *attribute_name = attribute_inputs.lookup_ptr(socket);
if (attribute_name == nullptr) {
return nullptr;
}
per_particle_inputs.append(&resources.construct<ParticleAttributeInput>(
AT, *attribute_name, socket->data_type().single_type()));
}
const fn::MultiFunction &per_particle_fn = resources.construct<fn::MFNetworkEvaluator>(
AT, dummy_deps.as_span(), sockets_to_compute);
Array<bool> output_is_global(sockets_to_compute.size(), false);
const ParticleFunction &particle_fn = resources.construct<ParticleFunction>(
AT,
nullptr,
&per_particle_fn,
Span<const ParticleFunctionInput *>(),
per_particle_inputs.as_span(),
output_is_global.as_span());
return &particle_fn;
}
class ParticleForce {
public:
virtual ~ParticleForce() = default;
virtual void add_force(fn::AttributesRef attributes,
MutableSpan<float3> r_combined_force) const = 0;
};
class ParticleFunctionForce : public ParticleForce {
private:
const ParticleFunction &particle_fn_;
public:
ParticleFunctionForce(const ParticleFunction &particle_fn) : particle_fn_(particle_fn)
{
}
void add_force(fn::AttributesRef attributes, MutableSpan<float3> r_combined_force) const override
{
IndexMask mask = IndexRange(attributes.size());
ParticleFunctionEvaluator evaluator{particle_fn_, mask, attributes};
evaluator.compute();
fn::VSpan<float3> forces = evaluator.get<float3>(0, "Force");
for (uint i : mask) {
r_combined_force[i] += forces[i];
}
}
};
static Vector<const ParticleForce *> create_forces_for_particle_simulation(
const nodes::DNode &simulation_node,
nodes::MFNetworkTreeMap &network_map,
ResourceCollector &resources,
const Map<const fn::MFOutputSocket *, std::string> &attribute_inputs)
{
Vector<const ParticleForce *> forces;
for (const nodes::DOutputSocket *origin_socket :
simulation_node.input(2, "Forces").linked_sockets()) {
const nodes::DNode &origin_node = origin_socket->node();
if (origin_node.idname() != "SimulationNodeForce") {
continue;
}
const fn::MFInputSocket &force_socket = network_map.lookup_dummy(
origin_node.input(0, "Force"));
const ParticleFunction *particle_fn = create_particle_function_for_inputs(
{&force_socket}, resources, attribute_inputs);
if (particle_fn == nullptr) {
continue;
}
const ParticleForce &force = resources.construct<ParticleFunctionForce>(AT, *particle_fn);
forces.append(&force);
}
return forces;
}
static Map<std::string, Vector<const ParticleForce *>> collect_forces(
nodes::MFNetworkTreeMap &network_map,
ResourceCollector &resources,
const Map<const fn::MFOutputSocket *, std::string> &attribute_inputs)
{
Map<std::string, Vector<const ParticleForce *>> forces_by_simulation;
for (const nodes::DNode *dnode :
network_map.tree().nodes_by_type("SimulationNodeParticleSimulation")) {
std::string name = dnode_to_path(*dnode);
Vector<const ParticleForce *> forces = create_forces_for_particle_simulation(
*dnode, network_map, resources, attribute_inputs);
forces_by_simulation.add_new(std::move(name), std::move(forces));
}
return forces_by_simulation;
}
static void simulation_data_update(Depsgraph *depsgraph, Scene *scene, Simulation *simulation_cow)
{
int current_frame = scene->r.cfra;
if (simulation_cow->current_frame == current_frame) {
return;
}
/* Below we modify the original state/cache. Only the active depsgraph is allowed to do that. */
if (!DEG_is_active(depsgraph)) {
return;
}
Simulation *simulation_orig = (Simulation *)DEG_get_original_id(&simulation_cow->id);
nodes::NodeTreeRefMap tree_refs;
/* TODO: Use simulation_cow, but need to add depsgraph relations before that. */
const nodes::DerivedNodeTree tree{simulation_orig->nodetree, tree_refs};
fn::MFNetwork network;
ResourceCollector resources;
nodes::MFNetworkTreeMap network_map = insert_node_tree_into_mf_network(network, tree, resources);
Map<const fn::MFOutputSocket *, std::string> attribute_inputs = deduplicate_attribute_nodes(
network, network_map, tree);
fn::mf_network_optimization::constant_folding(network, resources);
fn::mf_network_optimization::common_subnetwork_elimination(network);
fn::mf_network_optimization::dead_node_removal(network);
// WM_clipboard_text_set(network.to_dot().c_str(), false);
Map<std::string, Vector<const ParticleForce *>> forces_by_simulation = collect_forces(
network_map, resources, attribute_inputs);
if (current_frame == 1) {
reinitialize_empty_simulation_states(simulation_orig, tree);
RNG *rng = BLI_rng_new(0);
simulation_orig->current_frame = 1;
LISTBASE_FOREACH (ParticleSimulationState *, state, &simulation_orig->states) {
state->tot_particles = 1000;
CustomData_realloc(&state->attributes, state->tot_particles);
ensure_attributes_exist(state);
CustomDataAttributesRef custom_data_attributes{state->attributes,
(uint)state->tot_particles};
fn::MutableAttributesRef attributes = custom_data_attributes;
MutableSpan<float3> positions = attributes.get<float3>("Position");
MutableSpan<float3> velocities = attributes.get<float3>("Velocity");
MutableSpan<int32_t> ids = attributes.get<int32_t>("ID");
for (uint i : positions.index_range()) {
positions[i] = {i / 100.0f, 0, 0};
velocities[i] = {0, BLI_rng_get_float(rng) - 0.5f, BLI_rng_get_float(rng) - 0.5f};
ids[i] = i;
}
}
BLI_rng_free(rng);
copy_states_to_cow(simulation_orig, simulation_cow);
}
else if (current_frame == simulation_orig->current_frame + 1) {
update_simulation_state_list(simulation_orig, tree);
float time_step = 1.0f / 24.0f;
simulation_orig->current_frame = current_frame;
LISTBASE_FOREACH (ParticleSimulationState *, state, &simulation_orig->states) {
ensure_attributes_exist(state);
CustomDataAttributesRef custom_data_attributes{state->attributes,
(uint)state->tot_particles};
fn::MutableAttributesRef attributes = custom_data_attributes;
MutableSpan<float3> positions = attributes.get<float3>("Position");
MutableSpan<float3> velocities = attributes.get<float3>("Velocity");
Array<float3> force_vectors{(uint)state->tot_particles, {0, 0, 0}};
Span<const ParticleForce *> forces = forces_by_simulation.lookup_as(state->head.name);
for (const ParticleForce *force : forces) {
force->add_force(attributes, force_vectors);
}
for (uint i : positions.index_range()) {
velocities[i] += force_vectors[i] * time_step;
positions[i] += velocities[i] * time_step;
}
}
copy_states_to_cow(simulation_orig, simulation_cow);
}
}
} // namespace blender::bke
void BKE_simulation_data_update(Depsgraph *depsgraph, Scene *scene, Simulation *simulation)
{
blender::bke::simulation_data_update(depsgraph, scene, simulation);
blender::sim::update_simulation_in_depsgraph(depsgraph, scene, simulation);
}

View File

@ -304,7 +304,6 @@ set(SRC
)
set(LIB
bf_blenkernel
bf_functions
bf_intern_sky
)

View File

@ -24,8 +24,11 @@ set(INC
../blenkernel
../blenlib
../depsgraph
../functions
../imbuf
../makesdna
../makesrna
../nodes
../../../intern/guardedalloc
)
@ -41,11 +44,15 @@ set(SRC
intern/implicit.h
intern/implicit_blender.c
intern/implicit_eigen.cpp
intern/simulation_update.cc
SIM_mass_spring.h
SIM_simulation_update.hh
)
set(LIB
bf_blenkernel
bf_nodes
)
if(WITH_OPENMP_STATIC)

View File

@ -0,0 +1,32 @@
/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef __SIM_SIMULATION_UPDATE_HH__
#define __SIM_SIMULATION_UPDATE_HH__
struct Depsgraph;
struct Scene;
struct Simulation;
namespace blender::sim {
void update_simulation_in_depsgraph(Depsgraph *depsgraph,
Scene *scene_cow,
Simulation *simulation_cow);
}
#endif /* __SIM_SIMULATION_UPDATE_HH__ */

View File

@ -0,0 +1,678 @@
/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "SIM_simulation_update.hh"
#include "BKE_customdata.h"
#include "BKE_simulation.h"
#include "DNA_scene_types.h"
#include "DNA_simulation_types.h"
#include "DEG_depsgraph_query.h"
#include "BLI_array.hh"
#include "BLI_float3.hh"
#include "BLI_listbase.h"
#include "BLI_map.hh"
#include "BLI_rand.h"
#include "BLI_vector.hh"
#include "NOD_node_tree_multi_function.hh"
#include "FN_attributes_ref.hh"
#include "FN_cpp_types.hh"
#include "FN_multi_function_network_evaluation.hh"
#include "FN_multi_function_network_optimization.hh"
extern "C" {
void WM_clipboard_text_set(const char *buf, bool selection);
}
namespace blender::sim {
static void ensure_attributes_exist(ParticleSimulationState *state)
{
if (CustomData_get_layer_named(&state->attributes, CD_PROP_FLOAT3, "Position") == nullptr) {
CustomData_add_layer_named(
&state->attributes, CD_PROP_FLOAT3, CD_CALLOC, nullptr, state->tot_particles, "Position");
}
if (CustomData_get_layer_named(&state->attributes, CD_PROP_FLOAT3, "Velocity") == nullptr) {
CustomData_add_layer_named(
&state->attributes, CD_PROP_FLOAT3, CD_CALLOC, nullptr, state->tot_particles, "Velocity");
}
if (CustomData_get_layer_named(&state->attributes, CD_PROP_INT32, "ID") == nullptr) {
CustomData_add_layer_named(
&state->attributes, CD_PROP_INT32, CD_CALLOC, nullptr, state->tot_particles, "ID");
}
}
static void copy_states_to_cow(Simulation *simulation_orig, Simulation *simulation_cow)
{
BKE_simulation_state_remove_all(simulation_cow);
simulation_cow->current_frame = simulation_orig->current_frame;
LISTBASE_FOREACH (SimulationState *, state_orig, &simulation_orig->states) {
switch ((eSimulationStateType)state_orig->type) {
case SIM_STATE_TYPE_PARTICLES: {
ParticleSimulationState *particle_state_orig = (ParticleSimulationState *)state_orig;
ParticleSimulationState *particle_state_cow = (ParticleSimulationState *)
BKE_simulation_state_add(simulation_cow, SIM_STATE_TYPE_PARTICLES, state_orig->name);
particle_state_cow->tot_particles = particle_state_orig->tot_particles;
CustomData_copy(&particle_state_orig->attributes,
&particle_state_cow->attributes,
CD_MASK_ALL,
CD_DUPLICATE,
particle_state_orig->tot_particles);
break;
}
}
}
}
static Map<const fn::MFOutputSocket *, std::string> deduplicate_attribute_nodes(
fn::MFNetwork &network,
nodes::MFNetworkTreeMap &network_map,
const nodes::DerivedNodeTree &tree)
{
Span<const nodes::DNode *> attribute_dnodes = tree.nodes_by_type(
"SimulationNodeParticleAttribute");
uint amount = attribute_dnodes.size();
if (amount == 0) {
return {};
}
Vector<fn::MFInputSocket *> name_sockets;
for (const nodes::DNode *dnode : attribute_dnodes) {
fn::MFInputSocket &name_socket = network_map.lookup_dummy(dnode->input(0));
name_sockets.append(&name_socket);
}
fn::MFNetworkEvaluator network_fn{{}, name_sockets.as_span()};
fn::MFParamsBuilder params{network_fn, 1};
Array<std::string> attribute_names{amount, NoInitialization()};
for (uint i : IndexRange(amount)) {
params.add_uninitialized_single_output(
fn::GMutableSpan(fn::CPPType_string, attribute_names.data() + i, 1));
}
fn::MFContextBuilder context;
/* Todo: Check that the names don't depend on dummy nodes. */
network_fn.call({0}, params, context);
Map<std::pair<std::string, fn::MFDataType>, Vector<fn::MFNode *>>
attribute_nodes_by_name_and_type;
for (uint i : IndexRange(amount)) {
attribute_nodes_by_name_and_type
.lookup_or_add_default({attribute_names[i], name_sockets[i]->node().output(0).data_type()})
.append(&name_sockets[i]->node());
}
Map<const fn::MFOutputSocket *, std::string> attribute_inputs;
for (auto item : attribute_nodes_by_name_and_type.items()) {
StringRef attribute_name = item.key.first;
fn::MFDataType data_type = item.key.second;
Span<fn::MFNode *> nodes = item.value;
fn::MFOutputSocket &new_attribute_socket = network.add_input(
"Attribute '" + attribute_name + "'", data_type);
for (fn::MFNode *node : nodes) {
network.relink(node->output(0), new_attribute_socket);
}
network.remove(nodes);
attribute_inputs.add_new(&new_attribute_socket, attribute_name);
}
return attribute_inputs;
}
class CustomDataAttributesRef {
private:
Vector<void *> buffers_;
uint size_;
std::unique_ptr<fn::AttributesInfo> info_;
public:
CustomDataAttributesRef(CustomData &custom_data, uint size)
{
fn::AttributesInfoBuilder builder;
for (const CustomDataLayer &layer : Span(custom_data.layers, custom_data.totlayer)) {
buffers_.append(layer.data);
switch (layer.type) {
case CD_PROP_INT32: {
builder.add<int32_t>(layer.name, 0);
break;
}
case CD_PROP_FLOAT3: {
builder.add<float3>(layer.name, {0, 0, 0});
break;
}
}
}
info_ = std::make_unique<fn::AttributesInfo>(builder);
size_ = size;
}
operator fn::MutableAttributesRef()
{
return fn::MutableAttributesRef(*info_, buffers_, size_);
}
operator fn::AttributesRef() const
{
return fn::AttributesRef(*info_, buffers_, size_);
}
};
static std::string dnode_to_path(const nodes::DNode &dnode)
{
std::string path;
for (const nodes::DParentNode *parent = dnode.parent(); parent; parent = parent->parent()) {
path = parent->node_ref().name() + "/" + path;
}
path = path + dnode.name();
return path;
}
static void remove_unused_states(Simulation *simulation, const VectorSet<std::string> &state_names)
{
LISTBASE_FOREACH_MUTABLE (SimulationState *, state, &simulation->states) {
if (!state_names.contains(state->name)) {
BKE_simulation_state_remove(simulation, state);
}
}
}
static void reset_states(Simulation *simulation)
{
LISTBASE_FOREACH (SimulationState *, state, &simulation->states) {
switch ((eSimulationStateType)state->type) {
case SIM_STATE_TYPE_PARTICLES: {
ParticleSimulationState *particle_state = (ParticleSimulationState *)state;
CustomData_free(&particle_state->attributes, particle_state->tot_particles);
particle_state->tot_particles = 0;
break;
}
}
}
}
static SimulationState *try_find_state_by_name(Simulation *simulation, StringRef name)
{
LISTBASE_FOREACH (SimulationState *, state, &simulation->states) {
if (state->name == name) {
return state;
}
}
return nullptr;
}
static void add_missing_particle_states(Simulation *simulation, Span<std::string> state_names)
{
for (StringRefNull name : state_names) {
SimulationState *state = try_find_state_by_name(simulation, name);
if (state != nullptr) {
BLI_assert(state->type == SIM_STATE_TYPE_PARTICLES);
continue;
}
BKE_simulation_state_add(simulation, SIM_STATE_TYPE_PARTICLES, name.c_str());
}
}
static void reinitialize_empty_simulation_states(Simulation *simulation,
const nodes::DerivedNodeTree &tree)
{
VectorSet<std::string> state_names;
for (const nodes::DNode *dnode : tree.nodes_by_type("SimulationNodeParticleSimulation")) {
state_names.add(dnode_to_path(*dnode));
}
remove_unused_states(simulation, state_names);
reset_states(simulation);
add_missing_particle_states(simulation, state_names);
}
static void update_simulation_state_list(Simulation *simulation,
const nodes::DerivedNodeTree &tree)
{
VectorSet<std::string> state_names;
for (const nodes::DNode *dnode : tree.nodes_by_type("SimulationNodeParticleSimulation")) {
state_names.add(dnode_to_path(*dnode));
}
remove_unused_states(simulation, state_names);
add_missing_particle_states(simulation, state_names);
}
class ParticleFunctionInput {
public:
virtual ~ParticleFunctionInput() = default;
virtual void add_input(fn::AttributesRef attributes,
fn::MFParamsBuilder &params,
ResourceCollector &resources) const = 0;
};
class ParticleFunction {
private:
const fn::MultiFunction *global_fn_;
const fn::MultiFunction *per_particle_fn_;
Array<const ParticleFunctionInput *> global_inputs_;
Array<const ParticleFunctionInput *> per_particle_inputs_;
Array<bool> output_is_global_;
Vector<uint> global_output_indices_;
Vector<uint> per_particle_output_indices_;
Vector<fn::MFDataType> output_types_;
Vector<StringRefNull> output_names_;
friend class ParticleFunctionEvaluator;
public:
ParticleFunction(const fn::MultiFunction *global_fn,
const fn::MultiFunction *per_particle_fn,
Span<const ParticleFunctionInput *> global_inputs,
Span<const ParticleFunctionInput *> per_particle_inputs,
Span<bool> output_is_global)
: global_fn_(global_fn),
per_particle_fn_(per_particle_fn),
global_inputs_(global_inputs),
per_particle_inputs_(per_particle_inputs),
output_is_global_(output_is_global)
{
for (uint i : output_is_global_.index_range()) {
if (output_is_global_[i]) {
uint param_index = global_inputs_.size() + global_output_indices_.size();
fn::MFParamType param_type = global_fn_->param_type(param_index);
BLI_assert(param_type.is_output());
output_types_.append(param_type.data_type());
output_names_.append(global_fn_->param_name(param_index));
global_output_indices_.append(i);
}
else {
uint param_index = per_particle_inputs_.size() + per_particle_output_indices_.size();
fn::MFParamType param_type = per_particle_fn_->param_type(param_index);
BLI_assert(param_type.is_output());
output_types_.append(param_type.data_type());
output_names_.append(per_particle_fn_->param_name(param_index));
per_particle_output_indices_.append(i);
}
}
}
};
class ParticleFunctionEvaluator {
private:
ResourceCollector resources_;
const ParticleFunction &particle_fn_;
IndexMask mask_;
fn::MFContextBuilder global_context_;
fn::MFContextBuilder per_particle_context_;
fn::AttributesRef particle_attributes_;
Vector<void *> outputs_;
bool is_computed_ = false;
public:
ParticleFunctionEvaluator(const ParticleFunction &particle_fn,
IndexMask mask,
fn::AttributesRef particle_attributes)
: particle_fn_(particle_fn),
mask_(mask),
particle_attributes_(particle_attributes),
outputs_(particle_fn_.output_types_.size(), nullptr)
{
}
~ParticleFunctionEvaluator()
{
for (uint output_index : outputs_.index_range()) {
void *buffer = outputs_[output_index];
fn::MFDataType data_type = particle_fn_.output_types_[output_index];
BLI_assert(data_type.is_single()); /* For now. */
const fn::CPPType &type = data_type.single_type();
if (particle_fn_.output_is_global_[output_index]) {
type.destruct(buffer);
}
else {
type.destruct_indices(outputs_[0], mask_);
}
}
}
void compute()
{
BLI_assert(!is_computed_);
this->compute_globals();
this->compute_per_particle();
is_computed_ = true;
}
template<typename T> fn::VSpan<T> get(uint output_index, StringRef expected_name) const
{
return this->get(output_index, expected_name).typed<T>();
}
fn::GVSpan get(uint output_index, StringRef expected_name) const
{
#ifdef DEBUG
StringRef real_name = particle_fn_.output_names_[output_index];
BLI_assert(expected_name == real_name);
BLI_assert(is_computed_);
#endif
UNUSED_VARS_NDEBUG(expected_name);
const void *buffer = outputs_[output_index];
const fn::CPPType &type = particle_fn_.output_types_[output_index].single_type();
if (particle_fn_.output_is_global_[output_index]) {
return fn::GVSpan::FromSingleWithMaxSize(type, buffer);
}
else {
return fn::GVSpan(fn::GSpan(type, buffer, mask_.min_array_size()));
}
}
private:
void compute_globals()
{
if (particle_fn_.global_fn_ == nullptr) {
return;
}
fn::MFParamsBuilder params(*particle_fn_.global_fn_, mask_.min_array_size());
/* Add input parameters. */
for (const ParticleFunctionInput *input : particle_fn_.global_inputs_) {
input->add_input(particle_attributes_, params, resources_);
}
/* Add output parameters. */
for (uint output_index : particle_fn_.global_output_indices_) {
fn::MFDataType data_type = particle_fn_.output_types_[output_index];
BLI_assert(data_type.is_single()); /* For now. */
const fn::CPPType &type = data_type.single_type();
void *buffer = resources_.linear_allocator().allocate(type.size(), type.alignment());
params.add_uninitialized_single_output(fn::GMutableSpan(type, buffer, 1));
outputs_[output_index] = buffer;
}
particle_fn_.global_fn_->call({0}, params, global_context_);
}
void compute_per_particle()
{
if (particle_fn_.per_particle_fn_ == nullptr) {
return;
}
fn::MFParamsBuilder params(*particle_fn_.per_particle_fn_, mask_.min_array_size());
/* Add input parameters. */
for (const ParticleFunctionInput *input : particle_fn_.per_particle_inputs_) {
input->add_input(particle_attributes_, params, resources_);
}
/* Add output parameters. */
for (uint output_index : particle_fn_.per_particle_output_indices_) {
fn::MFDataType data_type = particle_fn_.output_types_[output_index];
BLI_assert(data_type.is_single()); /* For now. */
const fn::CPPType &type = data_type.single_type();
void *buffer = resources_.linear_allocator().allocate(type.size() * mask_.min_array_size(),
type.alignment());
params.add_uninitialized_single_output(
fn::GMutableSpan(type, buffer, mask_.min_array_size()));
outputs_[output_index] = buffer;
}
particle_fn_.per_particle_fn_->call(mask_, params, global_context_);
}
};
class ParticleAttributeInput : public ParticleFunctionInput {
private:
std::string attribute_name_;
const fn::CPPType &attribute_type_;
public:
ParticleAttributeInput(std::string attribute_name, const fn::CPPType &attribute_type)
: attribute_name_(std::move(attribute_name)), attribute_type_(attribute_type)
{
}
void add_input(fn::AttributesRef attributes,
fn::MFParamsBuilder &params,
ResourceCollector &UNUSED(resources)) const override
{
std::optional<fn::GSpan> span = attributes.try_get(attribute_name_, attribute_type_);
if (span.has_value()) {
params.add_readonly_single_input(*span);
}
else {
params.add_readonly_single_input(fn::GVSpan::FromDefault(attribute_type_));
}
}
};
static const ParticleFunction *create_particle_function_for_inputs(
Span<const fn::MFInputSocket *> sockets_to_compute,
ResourceCollector &resources,
const Map<const fn::MFOutputSocket *, std::string> &attribute_inputs)
{
BLI_assert(sockets_to_compute.size() >= 1);
const fn::MFNetwork &network = sockets_to_compute[0]->node().network();
VectorSet<const fn::MFOutputSocket *> dummy_deps;
VectorSet<const fn::MFInputSocket *> unlinked_input_deps;
network.find_dependencies(sockets_to_compute, dummy_deps, unlinked_input_deps);
BLI_assert(unlinked_input_deps.size() == 0);
Vector<const ParticleFunctionInput *> per_particle_inputs;
for (const fn::MFOutputSocket *socket : dummy_deps) {
const std::string *attribute_name = attribute_inputs.lookup_ptr(socket);
if (attribute_name == nullptr) {
return nullptr;
}
per_particle_inputs.append(&resources.construct<ParticleAttributeInput>(
AT, *attribute_name, socket->data_type().single_type()));
}
const fn::MultiFunction &per_particle_fn = resources.construct<fn::MFNetworkEvaluator>(
AT, dummy_deps.as_span(), sockets_to_compute);
Array<bool> output_is_global(sockets_to_compute.size(), false);
const ParticleFunction &particle_fn = resources.construct<ParticleFunction>(
AT,
nullptr,
&per_particle_fn,
Span<const ParticleFunctionInput *>(),
per_particle_inputs.as_span(),
output_is_global.as_span());
return &particle_fn;
}
class ParticleForce {
public:
virtual ~ParticleForce() = default;
virtual void add_force(fn::AttributesRef attributes,
MutableSpan<float3> r_combined_force) const = 0;
};
class ParticleFunctionForce : public ParticleForce {
private:
const ParticleFunction &particle_fn_;
public:
ParticleFunctionForce(const ParticleFunction &particle_fn) : particle_fn_(particle_fn)
{
}
void add_force(fn::AttributesRef attributes, MutableSpan<float3> r_combined_force) const override
{
IndexMask mask = IndexRange(attributes.size());
ParticleFunctionEvaluator evaluator{particle_fn_, mask, attributes};
evaluator.compute();
fn::VSpan<float3> forces = evaluator.get<float3>(0, "Force");
for (uint i : mask) {
r_combined_force[i] += forces[i];
}
}
};
static Vector<const ParticleForce *> create_forces_for_particle_simulation(
const nodes::DNode &simulation_node,
nodes::MFNetworkTreeMap &network_map,
ResourceCollector &resources,
const Map<const fn::MFOutputSocket *, std::string> &attribute_inputs)
{
Vector<const ParticleForce *> forces;
for (const nodes::DOutputSocket *origin_socket :
simulation_node.input(2, "Forces").linked_sockets()) {
const nodes::DNode &origin_node = origin_socket->node();
if (origin_node.idname() != "SimulationNodeForce") {
continue;
}
const fn::MFInputSocket &force_socket = network_map.lookup_dummy(
origin_node.input(0, "Force"));
const ParticleFunction *particle_fn = create_particle_function_for_inputs(
{&force_socket}, resources, attribute_inputs);
if (particle_fn == nullptr) {
continue;
}
const ParticleForce &force = resources.construct<ParticleFunctionForce>(AT, *particle_fn);
forces.append(&force);
}
return forces;
}
static Map<std::string, Vector<const ParticleForce *>> collect_forces(
nodes::MFNetworkTreeMap &network_map,
ResourceCollector &resources,
const Map<const fn::MFOutputSocket *, std::string> &attribute_inputs)
{
Map<std::string, Vector<const ParticleForce *>> forces_by_simulation;
for (const nodes::DNode *dnode :
network_map.tree().nodes_by_type("SimulationNodeParticleSimulation")) {
std::string name = dnode_to_path(*dnode);
Vector<const ParticleForce *> forces = create_forces_for_particle_simulation(
*dnode, network_map, resources, attribute_inputs);
forces_by_simulation.add_new(std::move(name), std::move(forces));
}
return forces_by_simulation;
}
void update_simulation_in_depsgraph(Depsgraph *depsgraph,
Scene *scene_cow,
Simulation *simulation_cow)
{
int current_frame = scene_cow->r.cfra;
if (simulation_cow->current_frame == current_frame) {
return;
}
/* Below we modify the original state/cache. Only the active depsgraph is allowed to do that. */
if (!DEG_is_active(depsgraph)) {
return;
}
Simulation *simulation_orig = (Simulation *)DEG_get_original_id(&simulation_cow->id);
nodes::NodeTreeRefMap tree_refs;
/* TODO: Use simulation_cow, but need to add depsgraph relations before that. */
const nodes::DerivedNodeTree tree{simulation_orig->nodetree, tree_refs};
fn::MFNetwork network;
ResourceCollector resources;
nodes::MFNetworkTreeMap network_map = insert_node_tree_into_mf_network(network, tree, resources);
Map<const fn::MFOutputSocket *, std::string> attribute_inputs = deduplicate_attribute_nodes(
network, network_map, tree);
fn::mf_network_optimization::constant_folding(network, resources);
fn::mf_network_optimization::common_subnetwork_elimination(network);
fn::mf_network_optimization::dead_node_removal(network);
// WM_clipboard_text_set(network.to_dot().c_str(), false);
Map<std::string, Vector<const ParticleForce *>> forces_by_simulation = collect_forces(
network_map, resources, attribute_inputs);
if (current_frame == 1) {
reinitialize_empty_simulation_states(simulation_orig, tree);
RNG *rng = BLI_rng_new(0);
simulation_orig->current_frame = 1;
LISTBASE_FOREACH (ParticleSimulationState *, state, &simulation_orig->states) {
state->tot_particles = 1000;
CustomData_realloc(&state->attributes, state->tot_particles);
ensure_attributes_exist(state);
CustomDataAttributesRef custom_data_attributes{state->attributes,
(uint)state->tot_particles};
fn::MutableAttributesRef attributes = custom_data_attributes;
MutableSpan<float3> positions = attributes.get<float3>("Position");
MutableSpan<float3> velocities = attributes.get<float3>("Velocity");
MutableSpan<int32_t> ids = attributes.get<int32_t>("ID");
for (uint i : positions.index_range()) {
positions[i] = {i / 100.0f, 0, 0};
velocities[i] = {0, BLI_rng_get_float(rng) - 0.5f, BLI_rng_get_float(rng) - 0.5f};
ids[i] = i;
}
}
BLI_rng_free(rng);
copy_states_to_cow(simulation_orig, simulation_cow);
}
else if (current_frame == simulation_orig->current_frame + 1) {
update_simulation_state_list(simulation_orig, tree);
float time_step = 1.0f / 24.0f;
simulation_orig->current_frame = current_frame;
LISTBASE_FOREACH (ParticleSimulationState *, state, &simulation_orig->states) {
ensure_attributes_exist(state);
CustomDataAttributesRef custom_data_attributes{state->attributes,
(uint)state->tot_particles};
fn::MutableAttributesRef attributes = custom_data_attributes;
MutableSpan<float3> positions = attributes.get<float3>("Position");
MutableSpan<float3> velocities = attributes.get<float3>("Velocity");
Array<float3> force_vectors{(uint)state->tot_particles, {0, 0, 0}};
Span<const ParticleForce *> forces = forces_by_simulation.lookup_as(state->head.name);
for (const ParticleForce *force : forces) {
force->add_force(attributes, force_vectors);
}
for (uint i : positions.index_range()) {
velocities[i] += force_vectors[i] * time_step;
positions[i] += velocities[i] * time_step;
}
}
copy_states_to_cow(simulation_orig, simulation_cow);
}
}
} // namespace blender::sim