Merge branch 'blender2.7'

This commit is contained in:
Brecht Van Lommel 2019-02-11 13:37:45 +01:00
commit 3f8e263709
19 changed files with 1585 additions and 140 deletions

View File

@ -17,6 +17,7 @@ set(INC_SYS
set(SRC
blender_camera.cpp
blender_device.cpp
blender_mesh.cpp
blender_object.cpp
blender_object_cull.cpp
@ -40,6 +41,7 @@ set(SRC
set(ADDON_FILES
addon/__init__.py
addon/engine.py
addon/operators.py
addon/osl.py
addon/presets.py
addon/properties.py

View File

@ -37,6 +37,8 @@ if "bpy" in locals():
importlib.reload(version_update)
if "ui" in locals():
importlib.reload(ui)
if "operators" in locals():
importlib.reload(operators)
if "properties" in locals():
importlib.reload(properties)
if "presets" in locals():
@ -119,6 +121,7 @@ classes = (
def register():
from bpy.utils import register_class
from . import ui
from . import operators
from . import properties
from . import presets
import atexit
@ -131,6 +134,7 @@ def register():
properties.register()
ui.register()
operators.register()
presets.register()
for cls in classes:
@ -142,6 +146,7 @@ def register():
def unregister():
from bpy.utils import unregister_class
from . import ui
from . import operators
from . import properties
from . import presets
import atexit
@ -149,6 +154,7 @@ def unregister():
bpy.app.handlers.version_update.remove(version_update.do_versions)
ui.unregister()
operators.unregister()
properties.unregister()
presets.unregister()

View File

@ -0,0 +1,133 @@
#
# Copyright 2011-2019 Blender Foundation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# <pep8 compliant>
import bpy
from bpy.types import Operator
from bpy.props import StringProperty
class CYCLES_OT_use_shading_nodes(Operator):
"""Enable nodes on a material, world or light"""
bl_idname = "cycles.use_shading_nodes"
bl_label = "Use Nodes"
@classmethod
def poll(cls, context):
return (getattr(context, "material", False) or getattr(context, "world", False) or
getattr(context, "light", False))
def execute(self, context):
if context.material:
context.material.use_nodes = True
elif context.world:
context.world.use_nodes = True
elif context.light:
context.light.use_nodes = True
return {'FINISHED'}
class CYCLES_OT_denoise_animation(Operator):
"""Denoise rendered animation sequence using current scene and view """ \
"""layer settings. Requires denoising data passes and output to """ \
"""OpenEXR multilayer files"""
bl_idname = "cycles.denoise_animation"
bl_label = "Denoise Animation"
input_filepath: StringProperty(
name='Input Filepath',
description='File path for frames to denoise. If not specified, uses the render file path from the scene',
default='',
subtype='FILE_PATH')
output_filepath: StringProperty(
name='Output Filepath',
description='If not specified, renders will be denoised in-place',
default='',
subtype='FILE_PATH')
def execute(self, context):
import os
preferences = context.preferences
scene = context.scene
view_layer = context.view_layer
in_filepath = self.input_filepath
out_filepath = self.output_filepath
if in_filepath == '':
in_filepath = scene.render.filepath
if out_filepath == '':
out_filepath = in_filepath
# Backup since we will overwrite the scene path temporarily
original_filepath = scene.render.filepath
# Expand filepaths for each frame so we match Blender render output exactly.
in_filepaths = []
out_filepaths = []
for frame in range(scene.frame_start, scene.frame_end + 1):
scene.render.filepath = in_filepath
filepath = scene.render.frame_path(frame=frame)
in_filepaths.append(filepath)
if not os.path.isfile(filepath):
scene.render.filepath = original_filepath
self.report({'ERROR'}, f"Frame '{filepath}' not found, animation must be complete.")
return {'CANCELLED'}
scene.render.filepath = out_filepath
filepath = scene.render.frame_path(frame=frame)
out_filepaths.append(filepath)
scene.render.filepath = original_filepath
# Run denoiser
# TODO: support cancel and progress reports.
import _cycles
try:
_cycles.denoise(preferences.as_pointer(),
scene.as_pointer(),
view_layer.as_pointer(),
input=in_filepaths,
output=out_filepaths)
except Exception as e:
self.report({'ERROR'}, str(e))
return {'FINISHED'}
self.report({'INFO'}, "Denoising completed.")
return {'FINISHED'}
classes = (
CYCLES_OT_use_shading_nodes,
CYCLES_OT_denoise_animation
)
def register():
from bpy.utils import register_class
for cls in classes:
register_class(cls)
def unregister():
from bpy.utils import unregister_class
for cls in classes:
unregister_class(cls)

View File

@ -1355,6 +1355,12 @@ class CyclesRenderLayerSettings(bpy.types.PropertyGroup):
default=False,
update=update_render_passes,
)
denoising_neighbor_frames: IntProperty(
name="Neighbor Frames",
description="Number of neighboring frames to use for denoising animations (more frames produce smoother results at the cost of performance)",
min=0, max=7,
default=0,
)
use_pass_crypto_object: BoolProperty(
name="Cryptomatte Object",
description="Render cryptomatte object pass, for isolating objects in compositing",

View File

@ -19,12 +19,8 @@
import bpy
from bpy_extras.node_utils import find_node_input
from bl_operators.presets import PresetMenu
import _cycles
from bpy.types import (
Panel,
Operator,
)
from bpy.types import Panel
class CYCLES_PT_sampling_presets(PresetMenu):
@ -636,6 +632,8 @@ class CYCLES_RENDER_PT_performance_acceleration_structure(CyclesButtonsPanel, Pa
bl_parent_id = "CYCLES_RENDER_PT_performance"
def draw(self, context):
import _cycles
layout = self.layout
layout.use_property_split = True
layout.use_property_decorate = False
@ -1277,27 +1275,6 @@ class CYCLES_OBJECT_PT_cycles_settings_performance(CyclesButtonsPanel, Panel):
col.prop(cob, "use_distance_cull")
class CYCLES_OT_use_shading_nodes(Operator):
"""Enable nodes on a material, world or light"""
bl_idname = "cycles.use_shading_nodes"
bl_label = "Use Nodes"
@classmethod
def poll(cls, context):
return (getattr(context, "material", False) or getattr(context, "world", False) or
getattr(context, "light", False))
def execute(self, context):
if context.material:
context.material.use_nodes = True
elif context.world:
context.world.use_nodes = True
elif context.light:
context.light.use_nodes = True
return {'FINISHED'}
def panel_node_draw(layout, id_data, output_type, input_name):
if not id_data.use_nodes:
layout.operator("cycles.use_shading_nodes", icon='NODETREE')
@ -2136,7 +2113,6 @@ classes = (
CYCLES_OBJECT_PT_cycles_settings,
CYCLES_OBJECT_PT_cycles_settings_ray_visibility,
CYCLES_OBJECT_PT_cycles_settings_performance,
CYCLES_OT_use_shading_nodes,
CYCLES_LIGHT_PT_preview,
CYCLES_LIGHT_PT_light,
CYCLES_LIGHT_PT_nodes,

View File

@ -0,0 +1,109 @@
/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "blender/blender_device.h"
#include "blender/blender_util.h"
CCL_NAMESPACE_BEGIN
int blender_device_threads(BL::Scene& b_scene)
{
BL::RenderSettings b_r = b_scene.render();
if(b_r.threads_mode() == BL::RenderSettings::threads_mode_FIXED)
return b_r.threads();
else
return 0;
}
DeviceInfo blender_device_info(BL::Preferences& b_preferences, BL::Scene& b_scene, bool background)
{
PointerRNA cscene = RNA_pointer_get(&b_scene.ptr, "cycles");
/* Default to CPU device. */
DeviceInfo device = Device::available_devices(DEVICE_MASK_CPU).front();
if(get_enum(cscene, "device") == 2) {
/* Find network device. */
vector<DeviceInfo> devices = Device::available_devices(DEVICE_MASK_NETWORK);
if(!devices.empty()) {
device = devices.front();
}
}
else if(get_enum(cscene, "device") == 1) {
/* Find cycles preferences. */
PointerRNA cpreferences;
BL::Preferences::addons_iterator b_addon_iter;
for(b_preferences.addons.begin(b_addon_iter); b_addon_iter != b_preferences.addons.end(); ++b_addon_iter) {
if(b_addon_iter->module() == "cycles") {
cpreferences = b_addon_iter->preferences().ptr;
break;
}
}
/* Test if we are using GPU devices. */
enum ComputeDevice {
COMPUTE_DEVICE_CPU = 0,
COMPUTE_DEVICE_CUDA = 1,
COMPUTE_DEVICE_OPENCL = 2,
COMPUTE_DEVICE_NUM = 3,
};
ComputeDevice compute_device = (ComputeDevice)get_enum(cpreferences,
"compute_device_type",
COMPUTE_DEVICE_NUM,
COMPUTE_DEVICE_CPU);
if(compute_device != COMPUTE_DEVICE_CPU) {
/* Query GPU devices with matching types. */
uint mask = DEVICE_MASK_CPU;
if(compute_device == COMPUTE_DEVICE_CUDA) {
mask |= DEVICE_MASK_CUDA;
}
else if(compute_device == COMPUTE_DEVICE_OPENCL) {
mask |= DEVICE_MASK_OPENCL;
}
vector<DeviceInfo> devices = Device::available_devices(mask);
/* Match device preferences and available devices. */
vector<DeviceInfo> used_devices;
RNA_BEGIN(&cpreferences, device, "devices") {
if(get_boolean(device, "use")) {
string id = get_string(device, "id");
foreach(DeviceInfo& info, devices) {
if(info.id == id) {
used_devices.push_back(info);
break;
}
}
}
} RNA_END;
if(!used_devices.empty()) {
int threads = blender_device_threads(b_scene);
device = Device::get_multi_device(used_devices,
threads,
background);
}
/* Else keep using the CPU device that was set before. */
}
}
return device;
}
CCL_NAMESPACE_END

View File

@ -0,0 +1,37 @@
/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __BLENDER_DEVICE_H__
#define __BLENDER_DEVICE_H__
#include "MEM_guardedalloc.h"
#include "RNA_types.h"
#include "RNA_access.h"
#include "RNA_blender_cpp.h"
#include "device/device.h"
CCL_NAMESPACE_BEGIN
/* Get number of threads to use for rendering. */
int blender_device_threads(BL::Scene& b_scene);
/* Convert Blender settings to device specification. */
DeviceInfo blender_device_info(BL::Preferences& b_preferences, BL::Scene& b_scene, bool background);
CCL_NAMESPACE_END
#endif /* __BLENDER_DEVICE_H__ */

View File

@ -18,9 +18,12 @@
#include "blender/CCL_api.h"
#include "blender/blender_device.h"
#include "blender/blender_sync.h"
#include "blender/blender_session.h"
#include "render/denoising.h"
#include "util/util_debug.h"
#include "util/util_foreach.h"
#include "util/util_logging.h"
@ -203,10 +206,10 @@ static PyObject *exit_func(PyObject * /*self*/, PyObject * /*args*/)
static PyObject *create_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pyengine, *pyuserpref, *pydata, *pyregion, *pyv3d, *pyrv3d;
PyObject *pyengine, *pypreferences, *pydata, *pyregion, *pyv3d, *pyrv3d;
int preview_osl;
if(!PyArg_ParseTuple(args, "OOOOOOi", &pyengine, &pyuserpref, &pydata,
if(!PyArg_ParseTuple(args, "OOOOOOi", &pyengine, &pypreferences, &pydata,
&pyregion, &pyv3d, &pyrv3d, &preview_osl))
{
return NULL;
@ -217,9 +220,9 @@ static PyObject *create_func(PyObject * /*self*/, PyObject *args)
RNA_pointer_create(NULL, &RNA_RenderEngine, (void*)PyLong_AsVoidPtr(pyengine), &engineptr);
BL::RenderEngine engine(engineptr);
PointerRNA userprefptr;
RNA_pointer_create(NULL, &RNA_Preferences, (void*)PyLong_AsVoidPtr(pyuserpref), &userprefptr);
BL::Preferences userpref(userprefptr);
PointerRNA preferencesptr;
RNA_pointer_create(NULL, &RNA_Preferences, (void*)PyLong_AsVoidPtr(pypreferences), &preferencesptr);
BL::Preferences preferences(preferencesptr);
PointerRNA dataptr;
RNA_main_pointer_create((Main*)PyLong_AsVoidPtr(pydata), &dataptr);
@ -245,11 +248,11 @@ static PyObject *create_func(PyObject * /*self*/, PyObject *args)
int width = region.width();
int height = region.height();
session = new BlenderSession(engine, userpref, data, v3d, rv3d, width, height);
session = new BlenderSession(engine, preferences, data, v3d, rv3d, width, height);
}
else {
/* offline session or preview render */
session = new BlenderSession(engine, userpref, data, preview_osl);
session = new BlenderSession(engine, preferences, data, preview_osl);
}
return PyLong_FromVoidPtr(session);
@ -627,6 +630,121 @@ static PyObject *opencl_disable_func(PyObject * /*self*/, PyObject * /*value*/)
}
#endif
static bool denoise_parse_filepaths(PyObject *pyfilepaths, vector<string>& filepaths)
{
if(PyUnicode_Check(pyfilepaths)) {
const char *filepath = PyUnicode_AsUTF8(pyfilepaths);
filepaths.push_back(filepath);
return true;
}
PyObject *sequence = PySequence_Fast(pyfilepaths, "File paths must be a string or sequence of strings");
if(sequence == NULL) {
return false;
}
for(Py_ssize_t i = 0; i < PySequence_Fast_GET_SIZE(sequence); i++) {
PyObject *item = PySequence_Fast_GET_ITEM(sequence, i);
const char *filepath = PyUnicode_AsUTF8(item);
if(filepath == NULL) {
PyErr_SetString(PyExc_ValueError, "File paths must be a string or sequence of strings.");
Py_DECREF(sequence);
return false;
}
filepaths.push_back(filepath);
}
Py_DECREF(sequence);
return true;
}
static PyObject *denoise_func(PyObject * /*self*/, PyObject *args, PyObject *keywords)
{
static const char *keyword_list[] = {"preferences", "scene", "view_layer",
"input", "output",
"tile_size", "samples", NULL};
PyObject *pypreferences, *pyscene, *pyviewlayer;
PyObject *pyinput, *pyoutput = NULL;
int tile_size = 0, samples = 0;
if (!PyArg_ParseTupleAndKeywords(args, keywords, "OOOO|Oii", (char**)keyword_list,
&pypreferences, &pyscene, &pyviewlayer,
&pyinput, &pyoutput,
&tile_size, &samples)) {
return NULL;
}
/* Get device specification from preferences and scene. */
PointerRNA preferencesptr;
RNA_pointer_create(NULL, &RNA_Preferences, (void*)PyLong_AsVoidPtr(pypreferences), &preferencesptr);
BL::Preferences b_preferences(preferencesptr);
PointerRNA sceneptr;
RNA_id_pointer_create((ID*)PyLong_AsVoidPtr(pyscene), &sceneptr);
BL::Scene b_scene(sceneptr);
DeviceInfo device = blender_device_info(b_preferences, b_scene, true);
/* Get denoising parameters from view layer. */
PointerRNA viewlayerptr;
RNA_pointer_create((ID*)PyLong_AsVoidPtr(pyscene), &RNA_ViewLayer, PyLong_AsVoidPtr(pyviewlayer), &viewlayerptr);
PointerRNA cviewlayer = RNA_pointer_get(&viewlayerptr, "cycles");
DenoiseParams params;
params.radius = get_int(cviewlayer, "denoising_radius");
params.strength = get_float(cviewlayer, "denoising_strength");
params.feature_strength = get_float(cviewlayer, "denoising_feature_strength");
params.relative_pca = get_boolean(cviewlayer, "denoising_relative_pca");
params.neighbor_frames = get_int(cviewlayer, "denoising_neighbor_frames");
/* Parse file paths list. */
vector<string> input, output;
if(!denoise_parse_filepaths(pyinput, input)) {
return NULL;
}
if(pyoutput) {
if(!denoise_parse_filepaths(pyoutput, output)) {
return NULL;
}
}
else {
output = input;
}
if(input.empty()) {
PyErr_SetString(PyExc_ValueError, "No input file paths specified.");
return NULL;
}
if(input.size() != output.size()) {
PyErr_SetString(PyExc_ValueError, "Number of input and output file paths does not match.");
return NULL;
}
/* Create denoiser. */
Denoiser denoiser(device);
denoiser.params = params;
denoiser.input = input;
denoiser.output = output;
if (tile_size > 0) {
denoiser.tile_size = make_int2(tile_size, tile_size);
}
if (samples > 0) {
denoiser.samples_override = samples;
}
/* Run denoiser. */
if(!denoiser.run()) {
PyErr_SetString(PyExc_ValueError, denoiser.error.c_str());
return NULL;
}
Py_RETURN_NONE;
}
static PyObject *debug_flags_update_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pyscene;
@ -787,6 +905,9 @@ static PyMethodDef methods[] = {
{"opencl_disable", opencl_disable_func, METH_NOARGS, ""},
#endif
/* Standalone denoising */
{"denoise", (PyCFunction)denoise_func, METH_VARARGS|METH_KEYWORDS, ""},
/* Debugging routines */
{"debug_flags_update", debug_flags_update_func, METH_VARARGS, ""},
{"debug_flags_reset", debug_flags_reset_func, METH_NOARGS, ""},

View File

@ -455,18 +455,14 @@ void BlenderSession::render(BL::Depsgraph& b_depsgraph_)
session->params.run_denoising = run_denoising;
session->params.full_denoising = full_denoising;
session->params.write_denoising_passes = write_denoising_passes;
session->params.denoising_radius = get_int(crl, "denoising_radius");
session->params.denoising_strength = get_float(crl, "denoising_strength");
session->params.denoising_feature_strength = get_float(crl, "denoising_feature_strength");
session->params.denoising_relative_pca = get_boolean(crl, "denoising_relative_pca");
session->params.denoising.radius = get_int(crl, "denoising_radius");
session->params.denoising.strength = get_float(crl, "denoising_strength");
session->params.denoising.feature_strength = get_float(crl, "denoising_feature_strength");
session->params.denoising.relative_pca = get_boolean(crl, "denoising_relative_pca");
scene->film->denoising_data_pass = buffer_params.denoising_data_pass;
scene->film->denoising_clean_pass = buffer_params.denoising_clean_pass;
scene->film->denoising_prefiltered_pass = buffer_params.denoising_prefiltered_pass;
session->params.denoising_radius = get_int(crl, "denoising_radius");
session->params.denoising_strength = get_float(crl, "denoising_strength");
session->params.denoising_feature_strength = get_float(crl, "denoising_feature_strength");
session->params.denoising_relative_pca = get_boolean(crl, "denoising_relative_pca");
scene->film->pass_alpha_threshold = b_view_layer.pass_alpha_threshold();
scene->film->tag_passes_update(scene, passes);

View File

@ -29,6 +29,7 @@
#include "device/device.h"
#include "blender/blender_device.h"
#include "blender/blender_sync.h"
#include "blender/blender_session.h"
#include "blender/blender_util.h"
@ -716,7 +717,7 @@ bool BlenderSync::get_session_pause(BL::Scene& b_scene, bool background)
}
SessionParams BlenderSync::get_session_params(BL::RenderEngine& b_engine,
BL::Preferences& b_userpref,
BL::Preferences& b_preferences,
BL::Scene& b_scene,
bool background)
{
@ -726,84 +727,12 @@ SessionParams BlenderSync::get_session_params(BL::RenderEngine& b_engine,
/* feature set */
params.experimental = (get_enum(cscene, "feature_set") != 0);
/* threads */
BL::RenderSettings b_r = b_scene.render();
if(b_r.threads_mode() == BL::RenderSettings::threads_mode_FIXED)
params.threads = b_r.threads();
else
params.threads = 0;
/* Background */
params.background = background;
/* Default to CPU device. */
params.device = Device::available_devices(DEVICE_MASK_CPU).front();
if(get_enum(cscene, "device") == 2) {
/* Find network device. */
vector<DeviceInfo> devices = Device::available_devices(DEVICE_MASK_NETWORK);
if(!devices.empty()) {
params.device = devices.front();
}
}
else if(get_enum(cscene, "device") == 1) {
/* Find cycles preferences. */
PointerRNA b_preferences;
BL::Preferences::addons_iterator b_addon_iter;
for(b_userpref.addons.begin(b_addon_iter); b_addon_iter != b_userpref.addons.end(); ++b_addon_iter) {
if(b_addon_iter->module() == "cycles") {
b_preferences = b_addon_iter->preferences().ptr;
break;
}
}
/* Test if we are using GPU devices. */
enum ComputeDevice {
COMPUTE_DEVICE_CPU = 0,
COMPUTE_DEVICE_CUDA = 1,
COMPUTE_DEVICE_OPENCL = 2,
COMPUTE_DEVICE_NUM = 3,
};
ComputeDevice compute_device = (ComputeDevice)get_enum(b_preferences,
"compute_device_type",
COMPUTE_DEVICE_NUM,
COMPUTE_DEVICE_CPU);
if(compute_device != COMPUTE_DEVICE_CPU) {
/* Query GPU devices with matching types. */
uint mask = DEVICE_MASK_CPU;
if(compute_device == COMPUTE_DEVICE_CUDA) {
mask |= DEVICE_MASK_CUDA;
}
else if(compute_device == COMPUTE_DEVICE_OPENCL) {
mask |= DEVICE_MASK_OPENCL;
}
vector<DeviceInfo> devices = Device::available_devices(mask);
/* Match device preferences and available devices. */
vector<DeviceInfo> used_devices;
RNA_BEGIN(&b_preferences, device, "devices") {
if(get_boolean(device, "use")) {
string id = get_string(device, "id");
foreach(DeviceInfo& info, devices) {
if(info.id == id) {
used_devices.push_back(info);
break;
}
}
}
} RNA_END;
if(!used_devices.empty()) {
params.device = Device::get_multi_device(used_devices,
params.threads,
params.background);
}
/* Else keep using the CPU device that was set before. */
}
}
/* Device */
params.threads = blender_device_threads(b_scene);
params.device = blender_device_info(b_preferences, b_scene, params.background);
/* samples */
int samples = get_int(cscene, "samples");
@ -875,6 +804,7 @@ SessionParams BlenderSync::get_session_params(BL::RenderEngine& b_engine,
params.text_timeout = (double)get_float(cscene, "debug_text_timeout");
/* progressive refine */
BL::RenderSettings b_r = b_scene.render();
params.progressive_refine = (b_engine.is_preview() ||
get_boolean(cscene, "use_progressive_refine")) &&
!b_r.use_save_buffers();

View File

@ -27,13 +27,13 @@ DenoisingTask::DenoisingTask(Device *device, const DeviceTask &task)
buffer(device),
device(device)
{
radius = task.denoising_radius;
nlm_k_2 = powf(2.0f, lerp(-5.0f, 3.0f, task.denoising_strength));
if(task.denoising_relative_pca) {
pca_threshold = -powf(10.0f, lerp(-8.0f, 0.0f, task.denoising_feature_strength));
radius = task.denoising.radius;
nlm_k_2 = powf(2.0f, lerp(-5.0f, 3.0f, task.denoising.strength));
if(task.denoising.relative_pca) {
pca_threshold = -powf(10.0f, lerp(-8.0f, 0.0f, task.denoising.feature_strength));
}
else {
pca_threshold = powf(10.0f, lerp(-5.0f, 3.0f, task.denoising_feature_strength));
pca_threshold = powf(10.0f, lerp(-5.0f, 3.0f, task.denoising.feature_strength));
}
render_buffer.frame_stride = task.frame_stride;

View File

@ -32,6 +32,32 @@ class RenderBuffers;
class RenderTile;
class Tile;
class DenoiseParams {
public:
/* Pixel radius for neighbouring pixels to take into account. */
int radius;
/* Controls neighbor pixel weighting for the denoising filter. */
float strength;
/* Preserve more or less detail based on feature passes. */
float feature_strength;
/* When removing pixels that don't carry information, use a relative threshold instead of an absolute one. */
bool relative_pca;
/* How many frames before and after the current center frame are included. */
int neighbor_frames;
/* Clamp the input to the range of +-1e8. Should be enough for any legitimate data. */
bool clamp_input;
DenoiseParams()
{
radius = 8;
strength = 0.5f;
feature_strength = 0.5f;
relative_pca = false;
neighbor_frames = 2;
clamp_input = true;
}
};
class DeviceTask : public Task {
public:
typedef enum { RENDER, FILM_CONVERT, SHADER } Type;
@ -68,10 +94,7 @@ public:
function<void(RenderTile*, Device*)> map_neighbor_tiles;
function<void(RenderTile*, Device*)> unmap_neighbor_tiles;
int denoising_radius;
float denoising_strength;
float denoising_feature_strength;
bool denoising_relative_pca;
DenoiseParams denoising;
bool denoising_from_render;
vector<int> denoising_frames;

View File

@ -16,6 +16,7 @@ set(SRC
camera.cpp
constant_fold.cpp
coverage.cpp
denoising.cpp
film.cpp
graph.cpp
image.cpp
@ -48,6 +49,7 @@ set(SRC_HEADERS
camera.h
constant_fold.h
coverage.h
denoising.h
film.h
graph.h
image.h

View File

@ -0,0 +1,887 @@
/*
* Copyright 2011-2018 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "render/denoising.h"
#include "kernel/filter/filter_defines.h"
#include "util/util_foreach.h"
#include "util/util_map.h"
#include "util/util_system.h"
#include "util/util_time.h"
#include <OpenImageIO/filesystem.h>
CCL_NAMESPACE_BEGIN
/* Utility Functions */
static void print_progress(int num, int total, int frame, int num_frames)
{
const char *label = "Denoise Frame ";
int cols = system_console_width();
cols -= strlen(label);
int len = 1;
for(int x = total; x > 9; x /= 10) {
len++;
}
int bars = cols - 2*len - 6;
printf("\r%s", label);
if(num_frames > 1) {
int frame_len = 1;
for(int x = num_frames - 1; x > 9; x /= 10) {
frame_len++;
}
bars -= frame_len + 2;
printf("%*d ", frame_len, frame);
}
int v = int(float(num)*bars/total);
printf("[");
for(int i = 0; i < v; i++) {
printf("=");
}
if(v < bars) {
printf(">");
}
for(int i = v+1; i < bars; i++) {
printf(" ");
}
printf(string_printf("] %%%dd / %d", len, total).c_str(), num);
fflush(stdout);
}
/* Splits in at its last dot, setting suffix to the part after the dot and in to the part before it.
* Returns whether a dot was found. */
static bool split_last_dot(string &in, string &suffix)
{
size_t pos = in.rfind(".");
if(pos == string::npos) {
return false;
}
suffix = in.substr(pos+1);
in = in.substr(0, pos);
return true;
}
/* Separate channel names as generated by Blender.
* If views is true:
* Inputs are expected in the form RenderLayer.Pass.View.Channel, sets renderlayer to "RenderLayer.View"
* Otherwise:
* Inputs are expected in the form RenderLayer.Pass.Channel */
static bool parse_channel_name(string name, string &renderlayer, string &pass, string &channel, bool multiview_channels)
{
if(!split_last_dot(name, channel)) {
return false;
}
string view;
if(multiview_channels && !split_last_dot(name, view)) {
return false;
}
if(!split_last_dot(name, pass)) {
return false;
}
renderlayer = name;
if(multiview_channels) {
renderlayer += "." + view;
}
return true;
}
/* Channel Mapping */
struct ChannelMapping {
int channel;
string name;
};
static void fill_mapping(vector<ChannelMapping> &map, int pos, string name, string channels)
{
for(const char *chan = channels.c_str(); *chan; chan++) {
map.push_back({pos++, name + "." + *chan});
}
}
static const int INPUT_NUM_CHANNELS = 15;
static vector<ChannelMapping> init_input_channels()
{
vector<ChannelMapping> map;
fill_mapping(map, 0, "Denoising Depth", "Z");
fill_mapping(map, 1, "Denoising Normal", "XYZ");
fill_mapping(map, 4, "Denoising Shadowing", "X");
fill_mapping(map, 5, "Denoising Albedo", "RGB");
fill_mapping(map, 8, "Noisy Image", "RGB");
fill_mapping(map, 11, "Denoising Variance", "RGB");
fill_mapping(map, 14, "Denoising Intensity", "X");
return map;
}
static const int OUTPUT_NUM_CHANNELS = 3;
static vector<ChannelMapping> init_output_channels()
{
vector<ChannelMapping> map;
fill_mapping(map, 0, "Combined", "RGB");
return map;
}
static const vector<ChannelMapping> input_channels = init_input_channels();
static const vector<ChannelMapping> output_channels = init_output_channels();
/* Renderlayer Handling */
bool DenoiseImageLayer::detect_denoising_channels()
{
/* Map device input to image channels. */
input_to_image_channel.clear();
input_to_image_channel.resize(INPUT_NUM_CHANNELS, -1);
foreach(const ChannelMapping& mapping, input_channels) {
vector<string>::iterator i = find(channels.begin(), channels.end(), mapping.name);
if(i == channels.end()) {
return false;
}
size_t input_channel = mapping.channel;
size_t layer_channel = i - channels.begin();
input_to_image_channel[input_channel] = layer_to_image_channel[layer_channel];
}
/* Map device output to image channels. */
output_to_image_channel.clear();
output_to_image_channel.resize(OUTPUT_NUM_CHANNELS, -1);
foreach(const ChannelMapping& mapping, output_channels) {
vector<string>::iterator i = find(channels.begin(), channels.end(), mapping.name);
if(i == channels.end()) {
return false;
}
size_t output_channel = mapping.channel;
size_t layer_channel = i - channels.begin();
output_to_image_channel[output_channel] = layer_to_image_channel[layer_channel];
}
/* Check that all buffer channels are correctly set. */
for(int i = 0; i < INPUT_NUM_CHANNELS; i++) {
assert(input_to_image_channel[i] >= 0);
}
for(int i = 0; i < OUTPUT_NUM_CHANNELS; i++) {
assert(output_to_image_channel[i] >= 0);
}
return true;
}
bool DenoiseImageLayer::match_channels(int neighbor,
const std::vector<string> &channelnames,
const std::vector<string> &neighbor_channelnames)
{
neighbor_input_to_image_channel.resize(neighbor + 1);
vector<int>& mapping = neighbor_input_to_image_channel[neighbor];
assert(mapping.size() == 0);
mapping.resize(input_to_image_channel.size(), -1);
for(int i = 0; i < input_to_image_channel.size(); i++) {
const string& channel = channelnames[input_to_image_channel[i]];
std::vector<string>::const_iterator frame_channel = find(neighbor_channelnames.begin(), neighbor_channelnames.end(), channel);
if(frame_channel == neighbor_channelnames.end()) {
return false;
}
mapping[i] = frame_channel - neighbor_channelnames.begin();
}
return true;
}
/* Denoise Task */
DenoiseTask::DenoiseTask(Device *device, Denoiser *denoiser, int frame, const vector<int>& neighbor_frames)
: denoiser(denoiser),
device(device),
frame(frame),
neighbor_frames(neighbor_frames),
current_layer(0),
input_pixels(device, "filter input buffer", MEM_READ_ONLY),
num_tiles(0)
{
image.samples = denoiser->samples_override;
}
DenoiseTask::~DenoiseTask()
{
free();
}
/* Device callbacks */
bool DenoiseTask::acquire_tile(Device *device, Device *tile_device, RenderTile &tile)
{
thread_scoped_lock tile_lock(tiles_mutex);
if(tiles.empty()) {
return false;
}
tile = tiles.front();
tiles.pop_front();
device->map_tile(tile_device, tile);
print_progress(num_tiles - tiles.size(), num_tiles, frame, denoiser->num_frames);
return true;
}
/* Mapping tiles is required for regular rendering since each tile has its separate memory
* which may be allocated on a different device.
* For standalone denoising, there is a single memory that is present on all devices, so the only
* thing that needs to be done here is to specify the surrounding tile geometry.
*
* However, since there is only one large memory, the denoised result has to be written to
* a different buffer to avoid having to copy an entire horizontal slice of the image. */
void DenoiseTask::map_neighboring_tiles(RenderTile *tiles, Device *tile_device)
{
for(int i = 0; i < 9; i++) {
if(i == 4) {
continue;
}
int dx = (i%3)-1;
int dy = (i/3)-1;
tiles[i].x = clamp(tiles[4].x + dx *denoiser->tile_size.x, 0, image.width);
tiles[i].w = clamp(tiles[4].x + (dx+1)*denoiser->tile_size.x, 0, image.width) - tiles[i].x;
tiles[i].y = clamp(tiles[4].y + dy *denoiser->tile_size.y, 0, image.height);
tiles[i].h = clamp(tiles[4].y + (dy+1)*denoiser->tile_size.y, 0, image.height) - tiles[i].y;
tiles[i].buffer = tiles[4].buffer;
tiles[i].offset = tiles[4].offset;
tiles[i].stride = image.width;
}
device_vector<float> *output_mem = new device_vector<float>(tile_device, "denoising_output", MEM_READ_WRITE);
output_mem->alloc(OUTPUT_NUM_CHANNELS*tiles[4].w*tiles[4].h);
output_mem->zero_to_device();
tiles[9] = tiles[4];
tiles[9].buffer = output_mem->device_pointer;
tiles[9].stride = tiles[9].w;
tiles[9].offset -= tiles[9].x + tiles[9].y*tiles[9].stride;
thread_scoped_lock output_lock(output_mutex);
assert(output_pixels.count(tiles[4].tile_index) == 0);
output_pixels[tiles[9].tile_index] = output_mem;
}
void DenoiseTask::unmap_neighboring_tiles(RenderTile *tiles)
{
thread_scoped_lock output_lock(output_mutex);
assert(output_pixels.count(tiles[4].tile_index) == 1);
device_vector<float> *output_mem = output_pixels[tiles[9].tile_index];
output_pixels.erase(tiles[4].tile_index);
output_lock.unlock();
output_mem->copy_from_device(0, OUTPUT_NUM_CHANNELS*tiles[9].w, tiles[9].h);
float *result = output_mem->data();
float *out = &image.pixels[image.num_channels*(tiles[9].y*image.width + tiles[9].x)];
const DenoiseImageLayer& layer = image.layers[current_layer];
const int *output_to_image_channel = layer.output_to_image_channel.data();
for(int y = 0; y < tiles[9].h; y++) {
for(int x = 0; x < tiles[9].w; x++, result += OUTPUT_NUM_CHANNELS) {
for(int i = 0; i < OUTPUT_NUM_CHANNELS; i++) {
out[image.num_channels*x + output_to_image_channel[i]] = result[i];
}
}
out += image.num_channels * image.width;
}
output_mem->free();
delete output_mem;
}
void DenoiseTask::release_tile()
{
}
bool DenoiseTask::get_cancel()
{
return false;
}
void DenoiseTask::create_task(DeviceTask& task)
{
/* Callback functions. */
task.acquire_tile = function_bind(&DenoiseTask::acquire_tile, this, device, _1, _2);
task.map_neighbor_tiles = function_bind(&DenoiseTask::map_neighboring_tiles, this, _1, _2);
task.unmap_neighbor_tiles = function_bind(&DenoiseTask::unmap_neighboring_tiles, this, _1);
task.release_tile = function_bind(&DenoiseTask::release_tile, this);
task.get_cancel = function_bind(&DenoiseTask::get_cancel, this);
/* Denoising parameters. */
task.denoising = denoiser->params;
task.denoising_do_filter = true;
task.denoising_write_passes = false;
task.denoising_from_render = false;
task.denoising_frames.resize(neighbor_frames.size());
for(int i = 0; i < neighbor_frames.size(); i++) {
task.denoising_frames[i] = neighbor_frames[i] - frame;
}
/* Buffer parameters. */
task.pass_stride = INPUT_NUM_CHANNELS;
task.target_pass_stride = OUTPUT_NUM_CHANNELS;
task.pass_denoising_data = 0;
task.pass_denoising_clean = -1;
task.frame_stride = image.width * image.height * INPUT_NUM_CHANNELS;
/* Create tiles. */
thread_scoped_lock tile_lock(tiles_mutex);
thread_scoped_lock output_lock(output_mutex);
tiles.clear();
assert(output_pixels.empty());
output_pixels.clear();
int tiles_x = divide_up(image.width, denoiser->tile_size.x);
int tiles_y = divide_up(image.height, denoiser->tile_size.y);
for(int ty = 0; ty < tiles_y; ty++) {
for(int tx = 0; tx < tiles_x; tx++) {
RenderTile tile;
tile.x = tx * denoiser->tile_size.x;
tile.y = ty * denoiser->tile_size.y;
tile.w = min(image.width - tile.x, denoiser->tile_size.x);
tile.h = min(image.height - tile.y, denoiser->tile_size.y);
tile.start_sample = 0;
tile.num_samples = image.layers[current_layer].samples;
tile.sample = 0;
tile.offset = 0;
tile.stride = image.width;
tile.tile_index = ty*tiles_x + tx;
tile.task = RenderTile::DENOISE;
tile.buffers = NULL;
tile.buffer = input_pixels.device_pointer;
tiles.push_back(tile);
}
}
num_tiles = tiles.size();
}
/* Denoiser Operations */
bool DenoiseTask::load_input_pixels(int layer)
{
int w = image.width;
int h = image.height;
int num_pixels = image.width * image.height;
int frame_stride = num_pixels * INPUT_NUM_CHANNELS;
/* Load center image */
DenoiseImageLayer& image_layer = image.layers[layer];
float *buffer_data = input_pixels.data();
image.read_pixels(image_layer, buffer_data);
buffer_data += frame_stride;
/* Load neighbor images */
for(int i = 0; i < image.in_neighbors.size(); i++) {
if(!image.read_neighbor_pixels(i, image_layer, buffer_data)) {
error = "Failed to read neighbor frame pixels";
return false;
}
buffer_data += frame_stride;
}
/* Preprocess */
buffer_data = input_pixels.data();
for(int neighbor = 0; neighbor < image.in_neighbors.size() + 1; neighbor++) {
/* Clamp */
if(denoiser->params.clamp_input) {
for(int i = 0; i < num_pixels*INPUT_NUM_CHANNELS; i++) {
buffer_data[i] = clamp(buffer_data[i], -1e8f, 1e8f);
}
}
/* Box blur */
int r = 5 * denoiser->params.radius;
float *data = buffer_data + 14;
array<float> temp(num_pixels);
for(int y = 0; y < h; y++) {
for(int x = 0; x < w; x++) {
int n = 0;
float sum = 0.0f;
for(int dx = max(x - r, 0); dx < min(x + r + 1, w); dx++, n++) {
sum += data[INPUT_NUM_CHANNELS * (y * w + dx)];
}
temp[y * w + x] = sum/n;
}
}
for(int y = 0; y < h; y++) {
for(int x = 0; x < w; x++) {
int n = 0;
float sum = 0.0f;
for(int dy = max(y - r, 0); dy < min(y + r + 1, h); dy++, n++) {
sum += temp[dy * w + x];
}
data[INPUT_NUM_CHANNELS * (y * w + x)] = sum/n;
}
}
buffer_data += frame_stride;
}
/* Copy to device */
input_pixels.copy_to_device();
return true;
}
/* Task stages */
bool DenoiseTask::load()
{
string center_filepath = denoiser->input[frame];
if(!image.load(center_filepath, error)) {
return false;
}
if(!image.load_neighbors(denoiser->input, neighbor_frames, error)) {
return false;
}
if(image.layers.empty()) {
error = "No image layers found to denoise in " + center_filepath;
return false;
}
/* Allocate device buffer. */
int num_frames = image.in_neighbors.size() + 1;
input_pixels.alloc(image.width * INPUT_NUM_CHANNELS, image.height * num_frames);
input_pixels.zero_to_device();
/* Read pixels for first layer. */
current_layer = 0;
if(!load_input_pixels(current_layer)) {
return false;
}
return true;
}
bool DenoiseTask::exec()
{
for(current_layer = 0; current_layer < image.layers.size(); current_layer++) {
/* Read pixels for secondary layers, first was already loaded. */
if(current_layer > 0) {
if(!load_input_pixels(current_layer)) {
return false;
}
}
/* Run task on device. */
DeviceTask task(DeviceTask::RENDER);
create_task(task);
device->task_add(task);
device->task_wait();
printf("\n");
}
return true;
}
bool DenoiseTask::save()
{
bool ok = image.save_output(denoiser->output[frame], error);
free();
return ok;
}
void DenoiseTask::free()
{
image.free();
input_pixels.free();
assert(output_pixels.empty());
}
/* Denoise Image Storage */
DenoiseImage::DenoiseImage()
{
in = NULL;
width = 0;
height = 0;
num_channels = 0;
samples = 0;
}
DenoiseImage::~DenoiseImage()
{
free();
}
void DenoiseImage::close_input()
{
foreach(ImageInput *i, in_neighbors) {
i->close();
ImageInput::destroy(i);
}
in_neighbors.clear();
if(in) {
in->close();
ImageInput::destroy(in);
in = NULL;
}
}
void DenoiseImage::free()
{
close_input();
pixels.clear();
}
bool DenoiseImage::parse_channels(const ImageSpec &in_spec, string& error)
{
const std::vector<string> &channels = in_spec.channelnames;
const ParamValue *multiview = in_spec.find_attribute("multiView");
const bool multiview_channels = (multiview &&
multiview->type().basetype == TypeDesc::STRING &&
multiview->type().arraylen >= 2);
layers.clear();
/* Loop over all the channels in the file, parse their name and sort them
* by RenderLayer.
* Channels that can't be parsed are directly passed through to the output. */
map<string, DenoiseImageLayer> file_layers;
for(int i = 0; i < channels.size(); i++) {
string layer, pass, channel;
if(parse_channel_name(channels[i], layer, pass, channel, multiview_channels)) {
file_layers[layer].channels.push_back(pass + "." + channel);
file_layers[layer].layer_to_image_channel.push_back(i);
}
}
/* Loop over all detected RenderLayers, check whether they contain a full set of input channels.
* Any channels that won't be processed internally are also passed through. */
for(map<string, DenoiseImageLayer>::iterator i = file_layers.begin(); i != file_layers.end(); ++i) {
const string& name = i->first;
DenoiseImageLayer& layer = i->second;
/* Check for full pass set. */
if(!layer.detect_denoising_channels()) {
continue;
}
layer.name = name;
layer.samples = samples;
/* If the sample value isn't set yet, check if there is a layer-specific one in the input file. */
if(layer.samples < 1) {
string sample_string = in_spec.get_string_attribute("cycles." + name + ".samples", "");
if(sample_string != "") {
if(!sscanf(sample_string.c_str(), "%d", &layer.samples)) {
error = "Failed to parse samples metadata: " + sample_string;
return false;
}
}
}
if(layer.samples < 1) {
error = string_printf("No sample number specified in the file for layer %s or on the command line", name.c_str());
return false;
}
layers.push_back(layer);
}
return true;
}
void DenoiseImage::read_pixels(const DenoiseImageLayer& layer, float *input_pixels)
{
/* Pixels from center file have already been loaded into pixels.
* We copy a subset into the device input buffer with channels reshuffled. */
const int *input_to_image_channel = layer.input_to_image_channel.data();
for(int i = 0; i < width * height; i++) {
for(int j = 0; j < INPUT_NUM_CHANNELS; j++) {
int image_channel = input_to_image_channel[j];
input_pixels[i*INPUT_NUM_CHANNELS + j] = pixels[((size_t)i)*num_channels + image_channel];
}
}
}
bool DenoiseImage::read_neighbor_pixels(int neighbor, const DenoiseImageLayer& layer, float *input_pixels)
{
/* Load pixels from neighboring frames, and copy them into device buffer
* with channels reshuffled. */
size_t num_pixels = (size_t)width * (size_t)height;
array<float> neighbor_pixels(num_pixels * num_channels);
if(!in_neighbors[neighbor]->read_image(TypeDesc::FLOAT, neighbor_pixels.data())) {
return false;
}
const int *input_to_image_channel = layer.neighbor_input_to_image_channel[neighbor].data();
for(int i = 0; i < width * height; i++) {
for(int j = 0; j < INPUT_NUM_CHANNELS; j++) {
int image_channel = input_to_image_channel[j];
input_pixels[i*INPUT_NUM_CHANNELS + j] = neighbor_pixels[((size_t)i)*num_channels + image_channel];
}
}
return true;
}
bool DenoiseImage::load(const string& in_filepath, string& error)
{
if(!Filesystem::is_regular(in_filepath)) {
error = "Couldn't find file: " + in_filepath;
return false;
}
in = ImageInput::open(in_filepath);
if(!in) {
error = "Couldn't open file: " + in_filepath;
return false;
}
const ImageSpec &in_spec = in->spec();
width = in_spec.width;
height = in_spec.height;
num_channels = in_spec.nchannels;
if(!parse_channels(in_spec, error)) {
return false;
}
if(layers.size() == 0) {
error = "Could not find a render layer containing denoising info";
return false;
}
size_t num_pixels = (size_t)width * (size_t)height;
pixels.resize(num_pixels * num_channels);
/* Read all channels into buffer. Reading all channels at once is faster
* than individually due to interleaved EXR channel storage. */
if(!in->read_image(TypeDesc::FLOAT, pixels.data())) {
error = "Failed to read image: " + in_filepath;
return false;
}
return true;
}
bool DenoiseImage::load_neighbors(const vector<string>& filepaths, const vector<int>& frames, string& error)
{
if(frames.size() > DENOISE_MAX_FRAMES - 1) {
error = string_printf("Maximum number of neighbors (%d) exceeded\n", DENOISE_MAX_FRAMES - 1);
return false;
}
for(int neighbor = 0; neighbor < frames.size(); neighbor++) {
int frame = frames[neighbor];
const string& filepath = filepaths[frame];
if(!Filesystem::is_regular(filepath)) {
error = "Couldn't find neighbor frame: " + filepath;
return false;
}
ImageInput *in_neighbor = ImageInput::open(filepath);
if(!in_neighbor) {
error = "Couldn't open neighbor frame: " + filepath;
return false;
}
const ImageSpec &neighbor_spec = in_neighbor->spec();
if(neighbor_spec.width != width || neighbor_spec.height != height) {
error = "Neighbor frame has different dimensions: " + filepath;
in_neighbor->close();
ImageInput::destroy(in_neighbor);
return false;
}
foreach(DenoiseImageLayer& layer, layers) {
if(!layer.match_channels(neighbor,
in->spec().channelnames,
neighbor_spec.channelnames))
{
error = "Neighbor frame misses denoising data passes: " + filepath;
in_neighbor->close();
ImageInput::destroy(in_neighbor);
return false;
}
}
in_neighbors.push_back(in_neighbor);
}
return true;
}
bool DenoiseImage::save_output(const string& out_filepath, string& error)
{
/* Save image with identical dimensions, channels and metadata. */
ImageSpec out_spec = in->spec();
/* Ensure that the output frame contains sample information even if the input didn't. */
for(int i = 0; i < layers.size(); i++) {
string name = "cycles." + layers[i].name + ".samples";
if(!out_spec.find_attribute(name, TypeDesc::STRING)) {
out_spec.attribute(name, TypeDesc::STRING, string_printf("%d", layers[i].samples));
}
}
/* We don't need input anymore at this point, and will possibly
* overwrite the same file. */
close_input();
/* Write to temporary file path, so we denoise images in place and don't
* risk destroying files when something goes wrong in file saving. */
string tmp_filepath = OIIO::Filesystem::temp_directory_path() + "/" + OIIO::Filesystem::unique_path() + ".exr";
ImageOutput *out = ImageOutput::create(tmp_filepath);
if(!out) {
error = "Failed to open temporary file " + tmp_filepath + " for writing";
return false;
}
/* Open temporary file and write image buffers. */
if(!out->open(tmp_filepath, out_spec)) {
error = "Failed to open file " + tmp_filepath + " for writing: " + out->geterror();
ImageOutput::destroy(out);
return false;
}
bool ok = true;
if(!out->write_image(TypeDesc::FLOAT, pixels.data())) {
error = "Failed to write to file " + tmp_filepath + ": " + out->geterror();
ok = false;
}
if(!out->close()) {
error = "Failed to save to file " + tmp_filepath + ": " + out->geterror();
ok = false;
}
ImageOutput::destroy(out);
/* Copy temporary file to outputput filepath. */
if(ok && !OIIO::Filesystem::rename(tmp_filepath, out_filepath)) {
error = "Failed to save to file " + out_filepath + ": " + out->geterror();
ok = false;
}
if(!ok) {
OIIO::Filesystem::remove(tmp_filepath);
return false;
}
return true;
}
/* File pattern handling and outer loop over frames */
Denoiser::Denoiser(DeviceInfo& device_info)
{
samples_override = 0;
tile_size = make_int2(64, 64);
num_frames = 0;
/* Initialize task scheduler. */
TaskScheduler::init();
/* Initialize device. */
DeviceRequestedFeatures req;
device = Device::create(device_info, stats, profiler, true);
device->load_kernels(req);
}
Denoiser::~Denoiser()
{
delete device;
TaskScheduler::exit();
}
bool Denoiser::run()
{
assert(input.size() == output.size());
num_frames = output.size();
for(int frame = 0; frame < num_frames; frame++) {
/* Skip empty output paths. */
if(output[frame].empty()) {
continue;
}
/* Determine neighbor frame numbers that should be used for filtering. */
vector<int> neighbor_frames;
for(int f = frame - params.neighbor_frames; f <= frame + params.neighbor_frames; f++) {
if (f >= 0 && f < num_frames && f != frame) {
neighbor_frames.push_back(f);
}
}
/* Execute task. */
DenoiseTask task(device, this, frame, neighbor_frames);
if(!task.load()) {
error = task.error;
return false;
}
if(!task.exec()) {
error = task.error;
return false;
}
if(!task.save()) {
error = task.error;
return false;
}
task.free();
}
return true;
}
CCL_NAMESPACE_END

View File

@ -0,0 +1,201 @@
/*
* Copyright 2011-2018 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __DENOISING_H__
#define __DENOISING_H__
#include "device/device.h"
#include "device/device_denoising.h"
#include "render/buffers.h"
#include "util/util_string.h"
#include "util/util_vector.h"
#include <OpenImageIO/imageio.h>
OIIO_NAMESPACE_USING
CCL_NAMESPACE_BEGIN
/* Denoiser */
class Denoiser {
public:
Denoiser(DeviceInfo& device_info);
~Denoiser();
bool run();
/* Error message after running, in case of failure. */
string error;
/* Sequential list of frame filepaths to denoise. */
vector<string> input;
/* Sequential list of frame filepaths to write result to. Empty entries
* are skipped, so only a subset of the sequence can be denoised while
* taking into account all input frames. */
vector<string> output;
/* Sample number override, takes precedence over values from input frames. */
int samples_override;
/* Tile size for processing on device. */
int2 tile_size;
/* Equivalent to the settings in the regular denoiser. */
DenoiseParams params;
protected:
friend class DenoiseTask;
Stats stats;
Profiler profiler;
Device *device;
int num_frames;
};
/* Denoise Image Layer */
struct DenoiseImageLayer {
string name;
/* All channels belonging to this DenoiseImageLayer. */
vector<string> channels;
/* Layer to image channel mapping. */
vector<int> layer_to_image_channel;
/* Sample amount that was used for rendering this layer. */
int samples;
/* Device input channel will be copied from image channel input_to_image_channel[i]. */
vector<int> input_to_image_channel;
/* input_to_image_channel of the secondary frames, if any are used. */
vector<vector<int> > neighbor_input_to_image_channel;
/* Write i-th channel of the processing output to output_to_image_channel[i]-th channel of the file. */
vector<int> output_to_image_channel;
/* Detect whether this layer contains a full set of channels and set up the offsets accordingly. */
bool detect_denoising_channels();
/* Map the channels of a secondary frame to the channels that are required for processing,
* fill neighbor_input_to_image_channel if all are present or return false if a channel are missing. */
bool match_channels(int neighbor,
const std::vector<string> &channelnames,
const std::vector<string> &neighbor_channelnames);
};
/* Denoise Image Data */
class DenoiseImage {
public:
DenoiseImage();
~DenoiseImage();
/* Dimensions */
int width, height, num_channels;
/* Samples */
int samples;
/* Pixel buffer with interleaved channels. */
array<float> pixels;
/* Image file handles */
ImageInput *in;
vector<ImageInput*> in_neighbors;
/* Render layers */
vector<DenoiseImageLayer> layers;
void free();
/* Open the input image, parse its channels, open the output image and allocate the output buffer. */
bool load(const string& in_filepath, string& error);
/* Load neighboring frames. */
bool load_neighbors(const vector<string>& filepaths, const vector<int>& frames, string& error);
/* Load subset of pixels from file buffer into input buffer, as needed for denoising
* on the device. Channels are reshuffled following the provided mapping. */
void read_pixels(const DenoiseImageLayer& layer, float *input_pixels);
bool read_neighbor_pixels(int neighbor, const DenoiseImageLayer& layer, float *input_pixels);
bool save_output(const string& out_filepath, string& error);
protected:
/* Parse input file channels, separate them into DenoiseImageLayers, detect DenoiseImageLayers with full channel sets,
* fill layers and set up the output channels and passthrough map. */
bool parse_channels(const ImageSpec &in_spec, string& error);
void close_input();
};
/* Denoise Task */
class DenoiseTask {
public:
DenoiseTask(Device *device, Denoiser *denoiser, int frame, const vector<int>& neighbor_frames);
~DenoiseTask();
/* Task stages */
bool load();
bool exec();
bool save();
void free();
string error;
protected:
/* Denoiser parameters and device */
Denoiser *denoiser;
Device *device;
/* Frame number to be denoised */
int frame;
vector<int> neighbor_frames;
/* Image file data */
DenoiseImage image;
int current_layer;
/* Device input buffer */
device_vector<float> input_pixels;
/* Tiles */
thread_mutex tiles_mutex;
list<RenderTile> tiles;
int num_tiles;
thread_mutex output_mutex;
map<int, device_vector<float>*> output_pixels;
/* Task handling */
bool load_input_pixels(int layer);
void create_task(DeviceTask& task);
/* Device task callbacks */
bool acquire_tile(Device *device, Device *tile_device, RenderTile &tile);
void map_neighboring_tiles(RenderTile *tiles, Device *tile_device);
void unmap_neighboring_tiles(RenderTile *tiles);
void release_tile();
bool get_cancel();
};
CCL_NAMESPACE_END
#endif /* __DENOISING_H__ */

View File

@ -927,9 +927,12 @@ void Session::update_status_time(bool show_pause, bool show_done)
*/
substatus += string_printf(", Sample %d/%d", progress.get_current_sample(), num_samples);
}
if(params.run_denoising) {
if(params.full_denoising) {
substatus += string_printf(", Denoised %d tiles", progress.get_denoised_tiles());
}
else if(params.run_denoising) {
substatus += string_printf(", Prefiltered %d tiles", progress.get_denoised_tiles());
}
}
else if(tile_manager.num_samples == INT_MAX)
substatus = string_printf("Path Tracing Sample %d", progressive_sample+1);
@ -976,10 +979,7 @@ void Session::render()
task.passes_size = tile_manager.params.get_passes_size();
if(params.run_denoising) {
task.denoising_radius = params.denoising_radius;
task.denoising_strength = params.denoising_strength;
task.denoising_feature_strength = params.denoising_feature_strength;
task.denoising_relative_pca = params.denoising_relative_pca;
task.denoising = params.denoising;
assert(!scene->film->need_update);
task.pass_stride = scene->film->pass_stride;

View File

@ -63,10 +63,7 @@ public:
bool run_denoising;
bool write_denoising_passes;
bool full_denoising;
int denoising_radius;
float denoising_strength;
float denoising_feature_strength;
bool denoising_relative_pca;
DenoiseParams denoising;
double cancel_timeout;
double reset_timeout;
@ -98,10 +95,6 @@ public:
run_denoising = false;
write_denoising_passes = false;
full_denoising = false;
denoising_radius = 8;
denoising_strength = 0.0f;
denoising_feature_strength = 0.0f;
denoising_relative_pca = false;
display_buffer_linear = false;

View File

@ -32,6 +32,7 @@
# include <sys/types.h>
#else
# include <unistd.h>
# include <sys/ioctl.h>
#endif
CCL_NAMESPACE_BEGIN
@ -113,6 +114,25 @@ bool system_cpu_run_thread_on_node(int node)
return numaAPI_RunThreadOnNode(node);
}
int system_console_width()
{
int columns = 0;
#ifdef _WIN32
CONSOLE_SCREEN_BUFFER_INFO csbi;
if(GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &csbi)) {
columns = csbi.dwSize.X;
}
#else
struct winsize w;
if(ioctl(STDOUT_FILENO, TIOCGWINSZ, &w) == 0) {
columns = w.ws_col;
}
#endif
return (columns > 0) ? columns : 80;
}
int system_cpu_num_active_group_processors()
{
if(!system_cpu_ensure_initialized()) {

View File

@ -27,6 +27,9 @@ bool system_cpu_ensure_initialized();
/* Get total number of threads in all NUMA nodes / CPU groups. */
int system_cpu_thread_count();
/* Get width in characters of the current console output. */
int system_console_width();
/* Get number of available nodes.
*
* This is in fact an index of last node plus one and it's not guaranteed