Cleanup: Make curve trim node code more semantically correct

The code used `Spline::LookupResult` in a way that referred to evaluated
points and control points interchangeably. That didn't affect the logic,
but the code became harder to read. Instead, introduce a local struct
to contain the data in a more obvious way.
This commit is contained in:
Hans Goudey 2021-07-18 19:20:57 -04:00
parent 76f0ef294a
commit 75ae328d62
1 changed files with 83 additions and 82 deletions

View File

@ -22,6 +22,8 @@
#include "node_geometry_util.hh"
using blender::attribute_math::mix2;
static bNodeSocketTemplate geo_node_curve_trim_in[] = {
{SOCK_GEOMETRY, N_("Curve")},
{SOCK_FLOAT, N_("Start"), 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, PROP_FACTOR},
@ -69,6 +71,15 @@ static void geo_node_curve_trim_update(bNodeTree *UNUSED(ntree), bNode *node)
namespace blender::nodes {
struct TrimLocation {
/* Control point index at the start side of the trim location. */
int left_index;
/* Control point intex at the end of the trim location's segment. */
int right_index;
/* The factor between the left and right indices. */
float factor;
};
template<typename T>
static void shift_slice_to_start(MutableSpan<T> data, const int start_index, const int size)
{
@ -78,51 +89,44 @@ static void shift_slice_to_start(MutableSpan<T> data, const int start_index, con
/* Shift slice to start of span and modifies start and end data. */
template<typename T>
static void linear_trim_data(const Spline::LookupResult &start_lookup,
const Spline::LookupResult &end_lookup,
MutableSpan<T> input_data)
static void linear_trim_data(const TrimLocation &start,
const TrimLocation &end,
MutableSpan<T> data)
{
const int size = end_lookup.next_evaluated_index - start_lookup.evaluated_index + 1;
const int size = end.right_index - start.left_index + 1;
if (start_lookup.evaluated_index > 0) {
shift_slice_to_start<T>(input_data, start_lookup.evaluated_index, size);
if (start.left_index > 0) {
shift_slice_to_start<T>(data, start.left_index, size);
}
const T start_data = blender::attribute_math::mix2<T>(
start_lookup.factor, input_data.first(), input_data[1]);
const T end_data = blender::attribute_math::mix2<T>(
end_lookup.factor, input_data[size - 2], input_data[size - 1]);
const T start_data = mix2<T>(start.factor, data.first(), data[1]);
const T end_data = mix2<T>(end.factor, data[size - 2], data[size - 1]);
input_data.first() = start_data;
input_data[size - 1] = end_data;
data.first() = start_data;
data[size - 1] = end_data;
}
/* Identical operation as #linear_trim_data, but opy data to a new MutableSpan rather than
* modifying the original data. */
template<typename T>
static void linear_trim_to_output_data(const Spline::LookupResult &start_lookup,
const Spline::LookupResult &end_lookup,
Span<T> input_data,
MutableSpan<T> output_data)
static void linear_trim_to_output_data(const TrimLocation &start,
const TrimLocation &end,
Span<T> src,
MutableSpan<T> dst)
{
const int size = end_lookup.next_evaluated_index - start_lookup.evaluated_index + 1;
const int size = end.right_index - start.left_index + 1;
const T start_data = blender::attribute_math::mix2<T>(
start_lookup.factor,
input_data[start_lookup.evaluated_index],
input_data[start_lookup.next_evaluated_index]);
const T end_data = blender::attribute_math::mix2<T>(end_lookup.factor,
input_data[end_lookup.evaluated_index],
input_data[end_lookup.next_evaluated_index]);
const T start_data = mix2<T>(start.factor, src[start.left_index], src[start.right_index]);
const T end_data = mix2<T>(end.factor, src[end.left_index], src[end.right_index]);
output_data.copy_from(input_data.slice(start_lookup.evaluated_index, size));
output_data.first() = start_data;
output_data.last() = end_data;
dst.copy_from(src.slice(start.left_index, size));
dst.first() = start_data;
dst.last() = end_data;
}
/* Look up the control points to the left and right of factor, and get the factor between them. */
static Spline::LookupResult lookup_control_point_position(Spline::LookupResult lookup,
Span<int> control_point_offsets)
static TrimLocation lookup_control_point_position(const Spline::LookupResult &lookup,
Span<int> control_point_offsets)
{
const int *left_offset = std::lower_bound(
control_point_offsets.begin(), control_point_offsets.end(), lookup.evaluated_index);
@ -136,18 +140,24 @@ static Spline::LookupResult lookup_control_point_position(Spline::LookupResult l
0.0f,
1.0f);
return Spline::LookupResult{left, right, factor};
return {left, right, factor};
}
static void trim_poly_spline(Spline &spline,
const Spline::LookupResult &start_lookup,
const Spline::LookupResult &end_lookup)
{
const int size = end_lookup.next_evaluated_index - start_lookup.evaluated_index + 1;
/* Poly splines have a 1 to 1 mapping between control points and evaluated points. */
const TrimLocation start = {
start_lookup.evaluated_index, start_lookup.next_evaluated_index, start_lookup.factor};
const TrimLocation end = {
end_lookup.evaluated_index, end_lookup.next_evaluated_index, end_lookup.factor};
linear_trim_data<float3>(start_lookup, end_lookup, spline.positions());
linear_trim_data<float>(start_lookup, end_lookup, spline.radii());
linear_trim_data<float>(start_lookup, end_lookup, spline.tilts());
const int size = end.right_index - start.left_index + 1;
linear_trim_data<float3>(start, end, spline.positions());
linear_trim_data<float>(start, end, spline.radii());
linear_trim_data<float>(start, end, spline.tilts());
spline.attributes.foreach_attribute(
[&](StringRefNull name, const AttributeMetaData &UNUSED(meta_data)) {
@ -155,7 +165,7 @@ static void trim_poly_spline(Spline &spline,
BLI_assert(src);
attribute_math::convert_to_static_type(src->type(), [&](auto dummy) {
using T = decltype(dummy);
linear_trim_data<T>(start_lookup, end_lookup, src->typed<T>());
linear_trim_data<T>(start, end, src->typed<T>());
});
return true;
},
@ -171,7 +181,13 @@ static PolySpline trim_nurbs_spline(const Spline &spline,
const Spline::LookupResult &start_lookup,
const Spline::LookupResult &end_lookup)
{
const int size = end_lookup.next_evaluated_index - start_lookup.evaluated_index + 1;
/* Since this outputs a poly spline, the evaluated indices are the control point indices. */
const TrimLocation start = {
start_lookup.evaluated_index, start_lookup.next_evaluated_index, start_lookup.factor};
const TrimLocation end = {
end_lookup.evaluated_index, end_lookup.next_evaluated_index, end_lookup.factor};
const int size = end.right_index - start.left_index + 1;
/* Create poly spline and copy trimmed data to it. */
PolySpline new_spline;
@ -193,22 +209,22 @@ static PolySpline trim_nurbs_spline(const Spline &spline,
using T = decltype(dummy);
GVArray_Typed<T> eval_data = spline.interpolate_to_evaluated<T>(src->typed<T>());
linear_trim_to_output_data<T>(
start_lookup, end_lookup, eval_data->get_internal_span(), dst->typed<T>());
start, end, eval_data->get_internal_span(), dst->typed<T>());
});
return true;
},
ATTR_DOMAIN_POINT);
linear_trim_to_output_data<float3>(
start_lookup, end_lookup, spline.evaluated_positions(), new_spline.positions());
start, end, spline.evaluated_positions(), new_spline.positions());
GVArray_Typed<float> evaluated_radii = spline.interpolate_to_evaluated(spline.radii());
linear_trim_to_output_data<float>(
start_lookup, end_lookup, evaluated_radii->get_internal_span(), new_spline.radii());
start, end, evaluated_radii->get_internal_span(), new_spline.radii());
GVArray_Typed<float> evaluated_tilts = spline.interpolate_to_evaluated(spline.tilts());
linear_trim_to_output_data<float>(
start_lookup, end_lookup, evaluated_tilts->get_internal_span(), new_spline.tilts());
start, end, evaluated_tilts->get_internal_span(), new_spline.tilts());
return new_spline;
}
@ -224,65 +240,54 @@ static void trim_bezier_spline(Spline &spline,
BezierSpline &bezier_spline = static_cast<BezierSpline &>(spline);
Span<int> control_offsets = bezier_spline.control_point_offsets();
const Spline::LookupResult start_control_lookup = lookup_control_point_position(start_lookup,
control_offsets);
Spline::LookupResult end_control_lookup = lookup_control_point_position(end_lookup,
control_offsets);
const TrimLocation start = lookup_control_point_position(start_lookup, control_offsets);
TrimLocation end = lookup_control_point_position(end_lookup, control_offsets);
/* The number of control points in the resulting spline. */
const int size = end_control_lookup.next_evaluated_index - start_control_lookup.evaluated_index +
1;
/* Trim the spline attributes. Done before end_control_lookup.factor recalculation as it needs
* the original end_control_lookup.factor value. */
linear_trim_data<float>(start_control_lookup, end_control_lookup, bezier_spline.radii());
linear_trim_data<float>(start_control_lookup, end_control_lookup, bezier_spline.tilts());
const int size = end.right_index - start.left_index + 1;
/* Trim the spline attributes. Done before end.factor recalculation as it needs
* the original end.factor value. */
linear_trim_data<float>(start, end, bezier_spline.radii());
linear_trim_data<float>(start, end, bezier_spline.tilts());
spline.attributes.foreach_attribute(
[&](StringRefNull name, const AttributeMetaData &UNUSED(meta_data)) {
std::optional<GMutableSpan> src = spline.attributes.get_for_write(name);
BLI_assert(src);
attribute_math::convert_to_static_type(src->type(), [&](auto dummy) {
using T = decltype(dummy);
linear_trim_data<T>(start_control_lookup, end_control_lookup, src->typed<T>());
linear_trim_data<T>(start, end, src->typed<T>());
});
return true;
},
ATTR_DOMAIN_POINT);
/* Recalculate end_control_lookup.factor if the size is two, because the adjustment in the
/* Recalculate end.factor if the size is two, because the adjustment in the
* position of the control point of the spline to the left of the new end point will change the
* factor between them. */
if (size == 2) {
if (start_lookup.factor == 1.0f) {
end_control_lookup.factor = 0.0f;
end.factor = 0.0f;
}
else {
end_control_lookup.factor = (end_lookup.evaluated_index + end_lookup.factor -
(start_lookup.evaluated_index + start_lookup.factor)) /
(control_offsets[end_control_lookup.next_evaluated_index] -
(start_lookup.evaluated_index + start_lookup.factor));
end_control_lookup.factor = std::clamp(end_control_lookup.factor, 0.0f, 1.0f);
end.factor = (end_lookup.evaluated_index + end_lookup.factor -
(start_lookup.evaluated_index + start_lookup.factor)) /
(control_offsets[end.right_index] -
(start_lookup.evaluated_index + start_lookup.factor));
end.factor = std::clamp(end.factor, 0.0f, 1.0f);
}
}
BezierSpline::InsertResult start_point = bezier_spline.calculate_segment_insertion(
start_control_lookup.evaluated_index,
start_control_lookup.next_evaluated_index,
start_control_lookup.factor);
start.left_index, start.right_index, start.factor);
/* Update the start control point parameters so that they are used in calculating the new end
* point. */
bezier_spline.positions()[start_control_lookup.evaluated_index] = start_point.position;
bezier_spline.handle_positions_right()[start_control_lookup.evaluated_index] =
start_point.right_handle;
bezier_spline.handle_positions_left()[start_control_lookup.next_evaluated_index] =
start_point.handle_next;
/* Update the start control point parameters so they are used calculating the new end point. */
bezier_spline.positions()[start.left_index] = start_point.position;
bezier_spline.handle_positions_right()[start.left_index] = start_point.right_handle;
bezier_spline.handle_positions_left()[start.right_index] = start_point.handle_next;
const BezierSpline::InsertResult end_point = bezier_spline.calculate_segment_insertion(
end_control_lookup.evaluated_index,
end_control_lookup.next_evaluated_index,
end_control_lookup.factor);
end.left_index, end.right_index, end.factor);
/* If size is two, then the start point right handle needs to change to reflect the end point
* previous handle update. */
@ -291,12 +296,10 @@ static void trim_bezier_spline(Spline &spline,
}
/* Shift control point position data to start at beginning of array. */
if (start_control_lookup.evaluated_index > 0) {
shift_slice_to_start(bezier_spline.positions(), start_control_lookup.evaluated_index, size);
shift_slice_to_start(
bezier_spline.handle_positions_left(), start_control_lookup.evaluated_index, size);
shift_slice_to_start(
bezier_spline.handle_positions_right(), start_control_lookup.evaluated_index, size);
if (start.left_index > 0) {
shift_slice_to_start(bezier_spline.positions(), start.left_index, size);
shift_slice_to_start(bezier_spline.handle_positions_left(), start.left_index, size);
shift_slice_to_start(bezier_spline.handle_positions_right(), start.left_index, size);
}
bezier_spline.positions().first() = start_point.position;
@ -311,11 +314,9 @@ static void trim_bezier_spline(Spline &spline,
/* If there is at least one control point between the endpoints, update the control
* point handle to the right of the start point and to the left of the end point. */
if (size > 2) {
bezier_spline.handle_positions_left()[start_control_lookup.next_evaluated_index -
start_control_lookup.evaluated_index] =
bezier_spline.handle_positions_left()[start.right_index - start.left_index] =
start_point.handle_next;
bezier_spline.handle_positions_right()[end_control_lookup.evaluated_index -
start_control_lookup.evaluated_index] =
bezier_spline.handle_positions_right()[end.left_index - start.left_index] =
end_point.handle_prev;
}