Cycles: improve ray tracing precision near triangle edges

Detect cases where a ray-intersection would miss the current triangle, which if
the intersection is strictly watertight, implies that a neighboring triangle would
incorrectly be hit instead.

When that is detected, apply a ray-offset. The idea being that we only want to
introduce potential error from ray offsets if we really need to.

This work for BVH2 and Embree, as we are able to match the ray-interesction
bit-for-bit, though doing so for Embree requires ugly hacks. Tiny differences
like fused-multiply-add or dot product intrinstics in matrix inversion and ray
intersection needed to be matched exactly, so this is fragile.

Unfortunately we're not able to do the same for OptiX or MetalRT, since those
implementations are unknown (and possibly impossible to match as hardware
instructions). Still artifacts are much reduced, though not eliminated.

Ref T97259

Differential Revision: https://developer.blender.org/D15559
This commit is contained in:
Brecht Van Lommel 2022-07-18 21:07:06 +02:00
parent 230f9ade64
commit 79f1cc601c
Notes: blender-bot 2023-05-08 19:11:47 +02:00
Referenced by issue #97259, Wireframe visible when going relatively far from the 0,0,0 (20 meters)
Referenced by pull request #107748, Fix #107725: ray-offset was incorrectly applied on motion triangles
Referenced by commit 6a7ca67a98, Fix #107725: ray-offset was incorrectly applied on motion triangles
3 changed files with 165 additions and 9 deletions

View File

@ -33,6 +33,30 @@ ccl_device_forceinline float intersection_t_offset(const float t)
return __uint_as_float(bits);
}
/* Ray offset to avoid self intersection.
*
* This function can be used to compute a modified ray start position for rays
* leaving from a surface. This is from:
* "A Fast and Robust Method for Avoiding Self-Intersection"
* Ray Tracing Gems, chapter 6.
*/
ccl_device_inline float3 ray_offset(const float3 P, const float3 Ng)
{
const float int_scale = 256.0f;
const int3 of_i = make_int3(
(int)(int_scale * Ng.x), (int)(int_scale * Ng.y), (int)(int_scale * Ng.z));
const float3 p_i = make_float3(
__int_as_float(__float_as_int(P.x) + ((P.x < 0) ? -of_i.x : of_i.x)),
__int_as_float(__float_as_int(P.y) + ((P.y < 0) ? -of_i.y : of_i.y)),
__int_as_float(__float_as_int(P.z) + ((P.z < 0) ? -of_i.z : of_i.z)));
const float origin = 1.0f / 32.0f;
const float float_scale = 1.0f / 65536.0f;
return make_float3(fabsf(P.x) < origin ? P.x + float_scale * Ng.x : p_i.x,
fabsf(P.y) < origin ? P.y + float_scale * Ng.y : p_i.y,
fabsf(P.z) < origin ? P.z + float_scale * Ng.z : p_i.z);
}
#ifndef __KERNEL_GPU__
ccl_device int intersections_compare(const void *a, const void *b)
{

View File

@ -31,6 +31,52 @@ ccl_device_forceinline void integrate_surface_shader_setup(KernelGlobals kg,
shader_setup_from_ray(kg, sd, &ray, &isect);
}
ccl_device_forceinline float3 integrate_surface_ray_offset(KernelGlobals kg,
const ccl_private ShaderData *sd,
const float3 ray_P,
const float3 ray_D)
{
/* No ray offset needed for other primitive types. */
if (!(sd->type & PRIMITIVE_TRIANGLE)) {
return ray_P;
}
/* Self intersection tests already account for the case where a ray hits the
* same primitive. However precision issues can still cause neighboring
* triangles to be hit. Here we test if the ray-triangle intersection with
* the same primitive would miss, implying that a neighbouring triangle would
* be hit instead.
*
* This relies on triangle intersection to be watertight, and the object inverse
* object transform to match the one used by ray intersection exactly.
*
* Potential improvements:
* - It appears this happens when either barycentric coordinates are small,
* or dot(sd->Ng, ray_D) is small. Detect such cases and skip test?
* - Instead of ray offset, can we tweak P to lie within the triangle?
*/
const uint tri_vindex = kernel_data_fetch(tri_vindex, sd->prim).w;
const packed_float3 tri_a = kernel_data_fetch(tri_verts, tri_vindex + 0),
tri_b = kernel_data_fetch(tri_verts, tri_vindex + 1),
tri_c = kernel_data_fetch(tri_verts, tri_vindex + 2);
float3 local_ray_P = ray_P;
float3 local_ray_D = ray_D;
if (!(sd->object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
const Transform itfm = object_get_inverse_transform(kg, sd);
local_ray_P = transform_point(&itfm, local_ray_P);
local_ray_D = transform_direction(&itfm, local_ray_D);
}
if (ray_triangle_intersect_self(local_ray_P, local_ray_D, tri_a, tri_b, tri_c)) {
return ray_P;
}
else {
return ray_offset(ray_P, sd->Ng);
}
}
#ifdef __HOLDOUT__
ccl_device_forceinline bool integrate_surface_holdout(KernelGlobals kg,
ConstIntegratorState state,
@ -200,6 +246,10 @@ ccl_device_forceinline void integrate_surface_direct_light(KernelGlobals kg,
# endif
}
if (ray.self.object != OBJECT_NONE) {
ray.P = integrate_surface_ray_offset(kg, sd, ray.P, ray.D);
}
/* Write shadow ray and associated state to global memory. */
integrator_state_write_shadow_ray(kg, shadow_state, &ray);
// Save memory by storing the light and object indices in the shadow_isect
@ -327,8 +377,9 @@ ccl_device_forceinline int integrate_surface_bsdf_bssrdf_bounce(
}
else {
/* Setup ray with changed origin and direction. */
INTEGRATOR_STATE_WRITE(state, ray, P) = sd->P;
INTEGRATOR_STATE_WRITE(state, ray, D) = normalize(bsdf_omega_in);
const float3 D = normalize(bsdf_omega_in);
INTEGRATOR_STATE_WRITE(state, ray, P) = integrate_surface_ray_offset(kg, sd, sd->P, D);
INTEGRATOR_STATE_WRITE(state, ray, D) = D;
INTEGRATOR_STATE_WRITE(state, ray, tmin) = 0.0f;
INTEGRATOR_STATE_WRITE(state, ray, tmax) = FLT_MAX;
#ifdef __RAY_DIFFERENTIALS__
@ -422,6 +473,9 @@ ccl_device_forceinline void integrate_surface_ao(KernelGlobals kg,
Ray ray ccl_optional_struct_init;
ray.P = shadow_ray_offset(kg, sd, ao_D, &skip_self);
ray.D = ao_D;
if (skip_self) {
ray.P = integrate_surface_ray_offset(kg, sd, ray.P, ray.D);
}
ray.tmin = 0.0f;
ray.tmax = kernel_data.integrator.ao_bounces_distance;
ray.time = sd->time;

View File

@ -105,6 +105,51 @@ ccl_device bool ray_disk_intersect(float3 ray_P,
return false;
}
/* Custom rcp, cross and dot implementations that match Embree bit for bit. */
ccl_device_forceinline float ray_triangle_rcp(const float x)
{
#ifdef __KERNEL_NEON__
/* Move scalar to vector register and do rcp. */
__m128 a;
a[0] = x;
float32x4_t reciprocal = vrecpeq_f32(a);
reciprocal = vmulq_f32(vrecpsq_f32(a, reciprocal), reciprocal);
reciprocal = vmulq_f32(vrecpsq_f32(a, reciprocal), reciprocal);
return reciprocal[0];
#elif defined(__KERNEL_SSE__)
const __m128 a = _mm_set_ss(x);
const __m128 r = _mm_rcp_ss(a);
# ifdef __KERNEL_AVX2_
return _mm_cvtss_f32(_mm_mul_ss(r, _mm_fnmadd_ss(r, a, _mm_set_ss(2.0f))));
# else
return _mm_cvtss_f32(_mm_mul_ss(r, _mm_sub_ss(_mm_set_ss(2.0f), _mm_mul_ss(r, a))));
# endif
#else
return 1.0f / x;
#endif
}
ccl_device_inline float ray_triangle_dot(const float3 a, const float3 b)
{
#if defined(__KERNEL_SSE41__) && defined(__KERNEL_SSE__)
return madd(ssef(a.x), ssef(b.x), madd(ssef(a.y), ssef(b.y), ssef(a.z) * ssef(b.z)))[0];
#else
return a.x * b.x + a.y * b.y + a.z * b.z;
#endif
}
ccl_device_inline float3 ray_triangle_cross(const float3 a, const float3 b)
{
#if defined(__KERNEL_SSE41__) && defined(__KERNEL_SSE__)
return make_float3(msub(ssef(a.y), ssef(b.z), ssef(a.z) * ssef(b.y))[0],
msub(ssef(a.z), ssef(b.x), ssef(a.x) * ssef(b.z))[0],
msub(ssef(a.x), ssef(b.y), ssef(a.y) * ssef(b.x))[0]);
#else
return make_float3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
#endif
}
ccl_device_forceinline bool ray_triangle_intersect(const float3 ray_P,
const float3 ray_D,
const float ray_tmin,
@ -130,9 +175,9 @@ ccl_device_forceinline bool ray_triangle_intersect(const float3 ray_P,
const float3 e2 = v1 - v2;
/* Perform edge tests. */
const float U = dot(cross(e0, v2 + v0), ray_D);
const float V = dot(cross(e1, v0 + v1), ray_D);
const float W = dot(cross(e2, v1 + v2), ray_D);
const float U = ray_triangle_dot(ray_triangle_cross(e0, v2 + v0), ray_D);
const float V = ray_triangle_dot(ray_triangle_cross(e1, v0 + v1), ray_D);
const float W = ray_triangle_dot(ray_triangle_cross(e2, v1 + v2), ray_D);
const float UVW = U + V + W;
const float eps = FLT_EPSILON * fabsf(UVW);
@ -144,7 +189,7 @@ ccl_device_forceinline bool ray_triangle_intersect(const float3 ray_P,
}
/* Calculate geometry normal and denominator. */
const float3 Ng1 = cross(e1, e0);
const float3 Ng1 = ray_triangle_cross(e1, e0);
const float3 Ng = Ng1 + Ng1;
const float den = dot(Ng, ray_D);
/* Avoid division by 0. */
@ -159,13 +204,46 @@ ccl_device_forceinline bool ray_triangle_intersect(const float3 ray_P,
return false;
}
const float rcp_UVW = (fabsf(UVW) < 1e-18f) ? 0.0f : 1.0f / UVW;
*isect_u = min(U * rcp_UVW, 1.0f);
*isect_v = min(V * rcp_UVW, 1.0f);
const float rcp_uvw = (fabsf(UVW) < 1e-18f) ? 0.0f : ray_triangle_rcp(UVW);
*isect_u = min(U * rcp_uvw, 1.0f);
*isect_v = min(V * rcp_uvw, 1.0f);
*isect_t = t;
return true;
}
ccl_device_forceinline bool ray_triangle_intersect_self(const float3 ray_P,
const float3 ray_D,
const float3 tri_a,
const float3 tri_b,
const float3 tri_c)
{
/* Matches logic in ray_triangle_intersect, self intersection test to validate
* if a ray is going to hit self or might incorrectly hit a neighboring triangle. */
/* Calculate vertices relative to ray origin. */
const float3 v0 = tri_a - ray_P;
const float3 v1 = tri_b - ray_P;
const float3 v2 = tri_c - ray_P;
/* Calculate triangle edges. */
const float3 e0 = v2 - v0;
const float3 e1 = v0 - v1;
const float3 e2 = v1 - v2;
/* Perform edge tests. */
const float U = ray_triangle_dot(ray_triangle_cross(v2 + v0, e0), ray_D);
const float V = ray_triangle_dot(ray_triangle_cross(v0 + v1, e1), ray_D);
const float W = ray_triangle_dot(ray_triangle_cross(v1 + v2, e2), ray_D);
const float eps = FLT_EPSILON * fabsf(U + V + W);
const float minUVW = min(U, min(V, W));
const float maxUVW = max(U, max(V, W));
/* Note the extended epsilon compared to ray_triangle_intersect, to account
* for intersections with neighboring triangles that have an epsilon. */
return (minUVW >= eps || maxUVW <= -eps);
}
/* Tests for an intersection between a ray and a quad defined by
* its midpoint, normal and sides.
* If ellipse is true, hits outside the ellipse that's enclosed by the