Simple initial implementation of angular bending springs.

These are much better suited for creating stiff hair. The previous
bending springs are based on "push" type spring along the hypothenuse
of 3 hair vertices. This sort of spring requires a very large force
in the direction of the spring for any angular effect, and is still
unstable in the equilibrium.

The new bending spring model is based on "target" vectors defined in a
local hair frame, which generates a force perpendicular to the hair
segment. For further details see
"Artistic Simulation of Curly Hair" (Pixar technical memo #12-03a)
or
"A Mass Spring Model for Hair Simulation" (Selle, Lentine, Fedkiw 2008)

Currently the implementation uses a single root frame that is not yet
propagated along the hair, so the resulting rest shape is not very
natural. Also damping and derivatives are still missing.
This commit is contained in:
Lukas Tönne 2014-09-19 11:15:16 +02:00
parent 86a4da1c54
commit 7a7778d003
5 changed files with 125 additions and 33 deletions

View File

@ -124,6 +124,7 @@ ClothVertex;
typedef struct ClothSpring {
int ij; /* Pij from the paper, one end of the spring. */
int kl; /* Pkl from the paper, one end of the spring. */
int mn;
float restlen; /* The original length of the spring. */
int matrix_index; /* needed for implicit solver (fast lookup) */
int type; /* types defined in BKE_cloth.h ("springType") */
@ -175,7 +176,8 @@ typedef enum {
CLOTH_SPRING_TYPE_SHEAR = (1 << 2),
CLOTH_SPRING_TYPE_BENDING = (1 << 3),
CLOTH_SPRING_TYPE_GOAL = (1 << 4),
CLOTH_SPRING_TYPE_SEWING = (1 << 5)
CLOTH_SPRING_TYPE_SEWING = (1 << 5),
CLOTH_SPRING_TYPE_BENDING_ANG = (1 << 6),
} CLOTH_SPRING_TYPES;
/* SPRING FLAGS */

View File

@ -1287,39 +1287,71 @@ static int cloth_build_springs ( ClothModifierData *clmd, DerivedMesh *dm )
}
}
else if (struct_springs > 2) {
/* bending springs for hair strands */
/* The current algorightm only goes through the edges in order of the mesh edges list */
/* and makes springs between the outer vert of edges sharing a vertice. This works just */
/* fine for hair, but not for user generated string meshes. This could/should be later */
/* extended to work with non-ordered edges so that it can be used for general "rope */
/* dynamics" without the need for the vertices or edges to be ordered through the length*/
/* of the strands. -jahka */
search = cloth->springs;
search2 = search->next;
while (search && search2) {
tspring = search->link;
tspring2 = search2->link;
if (tspring->ij == tspring2->kl) {
spring = (ClothSpring *)MEM_callocN ( sizeof ( ClothSpring ), "cloth spring" );
if (G.debug_value != 1112) {
search = cloth->springs;
search2 = search->next;
while (search && search2) {
tspring = search->link;
tspring2 = search2->link;
if (!spring) {
cloth_free_errorsprings(cloth, edgelist);
return 0;
if (tspring->ij == tspring2->kl) {
spring = (ClothSpring *)MEM_callocN ( sizeof ( ClothSpring ), "cloth spring" );
if (!spring) {
cloth_free_errorsprings(cloth, edgelist);
return 0;
}
spring->ij = tspring->kl;
spring->kl = tspring->ij;
spring->mn = tspring2->ij;
spring->restlen = len_v3v3(cloth->verts[spring->kl].xrest, cloth->verts[spring->ij].xrest);
spring->type = CLOTH_SPRING_TYPE_BENDING_ANG;
spring->stiffness = (cloth->verts[spring->kl].bend_stiff + cloth->verts[spring->ij].bend_stiff) / 2.0f;
bend_springs++;
BLI_linklist_prepend ( &cloth->springs, spring );
}
spring->ij = tspring2->ij;
spring->kl = tspring->kl;
spring->restlen = len_v3v3(cloth->verts[spring->kl].xrest, cloth->verts[spring->ij].xrest);
spring->type = CLOTH_SPRING_TYPE_BENDING;
spring->stiffness = (cloth->verts[spring->kl].bend_stiff + cloth->verts[spring->ij].bend_stiff) / 2.0f;
bend_springs++;
BLI_linklist_prepend ( &cloth->springs, spring );
search = search->next;
search2 = search2->next;
}
}
else {
/* bending springs for hair strands */
/* The current algorightm only goes through the edges in order of the mesh edges list */
/* and makes springs between the outer vert of edges sharing a vertice. This works just */
/* fine for hair, but not for user generated string meshes. This could/should be later */
/* extended to work with non-ordered edges so that it can be used for general "rope */
/* dynamics" without the need for the vertices or edges to be ordered through the length*/
/* of the strands. -jahka */
search = cloth->springs;
search2 = search->next;
while (search && search2) {
tspring = search->link;
tspring2 = search2->link;
if (tspring->ij == tspring2->kl) {
spring = (ClothSpring *)MEM_callocN ( sizeof ( ClothSpring ), "cloth spring" );
if (!spring) {
cloth_free_errorsprings(cloth, edgelist);
return 0;
}
spring->ij = tspring2->ij;
spring->kl = tspring->kl;
spring->restlen = len_v3v3(cloth->verts[spring->kl].xrest, cloth->verts[spring->ij].xrest);
spring->type = CLOTH_SPRING_TYPE_BENDING;
spring->stiffness = (cloth->verts[spring->kl].bend_stiff + cloth->verts[spring->ij].bend_stiff) / 2.0f;
bend_springs++;
BLI_linklist_prepend ( &cloth->springs, spring );
}
search = search->next;
search2 = search2->next;
}
search = search->next;
search2 = search2->next;
}
}

View File

@ -373,7 +373,7 @@ BLI_INLINE void cloth_calc_spring_force(ClothModifierData *clmd, ClothSpring *s,
BPH_mass_spring_force_spring_goal(data, s->ij, s->matrix_index, goal_x, goal_v, k, parms->goalfrict * 0.01f, s->f, s->dfdx, s->dfdv);
#endif
}
else { /* calculate force of bending springs */
else if (s->type & CLOTH_SPRING_TYPE_BENDING) { /* calculate force of bending springs */
#ifdef CLOTH_FORCE_SPRING_BEND
float kb, cb, scaling;
@ -383,6 +383,18 @@ BLI_INLINE void cloth_calc_spring_force(ClothModifierData *clmd, ClothSpring *s,
cb = kb = scaling / (20.0f * (parms->avg_spring_len + FLT_EPSILON));
BPH_mass_spring_force_spring_bending(data, s->ij, s->kl, s->matrix_index, s->restlen, kb, cb, s->f, s->dfdx, s->dfdv);
#endif
}
else if (s->type & CLOTH_SPRING_TYPE_BENDING_ANG) {
#ifdef CLOTH_FORCE_SPRING_BEND
float kb, cb, scaling;
s->flags |= CLOTH_SPRING_FLAG_NEEDED;
scaling = parms->bending + s->stiffness * fabsf(parms->max_bend - parms->bending);
cb = kb = scaling / (20.0f * (parms->avg_spring_len + FLT_EPSILON));
BPH_mass_spring_force_spring_bending_angular(data, s->ij, s->kl, s->matrix_index, s->restlen, kb, cb, s->f, s->dfdx, s->dfdv);
#endif
}
}

View File

@ -140,6 +140,10 @@ bool BPH_mass_spring_force_spring_linear(struct Implicit_Data *data, int i, int
bool BPH_mass_spring_force_spring_bending(struct Implicit_Data *data, int i, int j, int spring_index, float restlen,
float kb, float cb,
float r_f[3], float r_dfdx[3][3], float r_dfdv[3][3]);
/* Angular bending force based on local target vectors */
bool BPH_mass_spring_force_spring_bending_angular(struct Implicit_Data *data, int i, int j, int spring_index, float restlen,
float stiffness, float damping,
float r_f[3], float r_dfdx[3][3], float r_dfdv[3][3]);
/* Global goal spring */
bool BPH_mass_spring_force_spring_goal(struct Implicit_Data *data, int i, int spring_index, const float goal_x[3], const float goal_v[3],
float stiffness, float damping,

View File

@ -1181,12 +1181,12 @@ int BPH_mass_spring_init_spring(Implicit_Data *data, int index, int v1, int v2)
{
int s = data->M[0].vcount + index; /* index from array start */
/* tfm and S don't have spring entries (diagonal blocks only) */
init_fmatrix(data->bigI + s, v1, v2);
init_fmatrix(data->M + s, v1, v2);
init_fmatrix(data->dFdX + s, v1, v2);
init_fmatrix(data->dFdV + s, v1, v2);
init_fmatrix(data->A + s, v1, v2);
// init_fmatrix(data->S + s, v1, v2); // has no off-diagonal spring entries
init_fmatrix(data->P + s, v1, v2);
init_fmatrix(data->Pinv + s, v1, v2);
@ -1609,6 +1609,48 @@ bool BPH_mass_spring_force_spring_bending(Implicit_Data *data, int i, int j, int
}
}
/* Angular spring that pulls the vertex toward the local target
* See "Artistic Simulation of Curly Hair" (Pixar technical memo #12-03a)
*/
bool BPH_mass_spring_force_spring_bending_angular(Implicit_Data *data, int i, int j, int spring_index, float restlen,
float stiffness, float damping,
float r_f[3], float r_dfdx[3][3], float r_dfdv[3][3])
{
float target[3], dist[3], extent[3], length, dir[3], vel[3];
float f[3], dfdx[3][3], dfdv[3][3];
target[0] = 0.0f;
target[1] = 0.0f;
target[2] = restlen;
// calculate elonglation
// spring_length(data, i, j, extent, dir, &length, vel);
sub_v3_v3v3(extent, data->X[j], data->X[i]);
sub_v3_v3v3(vel, data->V[j], data->V[i]);
length = len_v3(extent);
sub_v3_v3v3(dist, target, extent);
mul_v3_v3fl(f, dist, stiffness);
// mul_v3_v3fl(f, dir, fbstar(length, restlen, kb, cb));
zero_m3(dfdx);
zero_m3(dfdv);
// outerproduct(dfdx, dir, dir);
// mul_m3_fl(dfdx, fbstar_jacobi(length, restlen, kb, cb));
/* XXX damping not supported */
// zero_m3(dfdv);
apply_spring(data, i, j, spring_index, f, dfdx, dfdv);
if (r_f) copy_v3_v3(r_f, f);
if (r_dfdx) copy_m3_m3(r_dfdx, dfdx);
if (r_dfdv) copy_m3_m3(r_dfdv, dfdv);
return true;
}
bool BPH_mass_spring_force_spring_goal(Implicit_Data *data, int i, int UNUSED(spring_index), const float goal_x[3], const float goal_v[3],
float stiffness, float damping,
float r_f[3], float r_dfdx[3][3], float r_dfdv[3][3])