Merge remote-tracking branch 'origin/blender-v2.90-release'

This commit is contained in:
Sybren A. Stüvel 2020-08-11 16:14:15 +02:00
commit a3af59f8e3
1 changed files with 162 additions and 376 deletions

View File

@ -30,7 +30,6 @@
#include "BLI_listbase.h"
#include "BLI_string_utf8.h"
#include "BLI_alloca.h"
#include "BLI_math.h"
#include "BLI_rand.h"
@ -45,7 +44,6 @@
#include "BKE_collection.h"
#include "BKE_duplilist.h"
#include "BKE_editmesh.h"
#include "BKE_editmesh_cache.h"
#include "BKE_font.h"
#include "BKE_global.h"
#include "BKE_idprop.h"
@ -302,55 +300,6 @@ static void make_child_duplis(const DupliContext *ctx,
/** \} */
/* -------------------------------------------------------------------- */
/** \name Internal Data Access Utilities
* \{ */
static Mesh *mesh_data_from_duplicator_object(Object *ob,
BMEditMesh **r_em,
const float (**r_vert_coords)[3],
const float (**r_vert_normals)[3])
{
/* Gather mesh info. */
BMEditMesh *em = BKE_editmesh_from_object(ob);
Mesh *me_eval;
*r_em = NULL;
*r_vert_coords = NULL;
if (r_vert_normals != NULL) {
*r_vert_normals = NULL;
}
/* We do not need any render-specific handling anymore, depsgraph takes care of that. */
/* NOTE: Do direct access to the evaluated mesh: this function is used
* during meta balls evaluation. But even without those all the objects
* which are needed for correct instancing are already evaluated. */
if (em != NULL) {
/* Note that this will only show deformation if #eModifierMode_OnCage is enabled.
* We could change this but it matches 2.7x behavior. */
me_eval = em->mesh_eval_cage;
if ((me_eval == NULL) || (me_eval->runtime.wrapper_type == ME_WRAPPER_TYPE_BMESH)) {
*r_em = em;
if (me_eval != NULL) {
EditMeshData *emd = me_eval->runtime.edit_data;
if ((emd != NULL) && (emd->vertexCos != NULL)) {
*r_vert_coords = emd->vertexCos;
if (r_vert_normals != NULL) {
BKE_editmesh_cache_ensure_vert_normals(em, emd);
*r_vert_normals = emd->vertexNos;
}
}
}
}
}
else {
me_eval = BKE_object_get_evaluated_mesh(ob);
}
return me_eval;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Dupli-Collection Implementation (#OB_DUPLICOLLECTION)
* \{ */
@ -400,178 +349,124 @@ static const DupliGenerator gen_dupli_collection = {
/** \name Dupli-Vertices Implementation (#OB_DUPLIVERTS for Geometry)
* \{ */
typedef struct VertexDupliData_Mesh {
typedef struct VertexDupliData {
Mesh *me_eval;
BMEditMesh *edit_mesh;
int totvert;
MVert *mvert;
float (*orco)[3];
bool use_rotation;
} VertexDupliData_Mesh;
typedef struct VertexDupliData_BMesh {
BMEditMesh *em;
/* Can be NULL. */
const float (*vert_coords)[3];
const float (*vert_normals)[3];
bool has_orco;
bool use_rotation;
} VertexDupliData_BMesh;
const DupliContext *ctx;
Object *inst_ob; /* object to instantiate (argument for vertex map callback) */
float child_imat[4][4];
} VertexDupliData;
static void get_duplivert_transform(const float co[3],
const float no[3],
const bool use_rotation,
const short no[3],
bool use_rotation,
short axis,
short upflag,
float r_mat[4][4])
float mat[4][4])
{
float quat[4];
const float size[3] = {1.0f, 1.0f, 1.0f};
if (use_rotation) {
/* Construct rotation matrix from normals. */
float no_flip[3];
negate_v3_v3(no_flip, no);
vec_to_quat(quat, no_flip, axis, upflag);
/* construct rotation matrix from normals */
float nor_f[3];
nor_f[0] = (float)-no[0];
nor_f[1] = (float)-no[1];
nor_f[2] = (float)-no[2];
vec_to_quat(quat, nor_f, axis, upflag);
}
else {
unit_qt(quat);
}
loc_quat_size_to_mat4(r_mat, co, quat, size);
loc_quat_size_to_mat4(mat, co, quat, size);
}
/**
* \param no: The direction, doesn't need to be normalized.
*/
static DupliObject *vertex_dupli(const DupliContext *ctx,
Object *child,
const float child_imat[4][4],
int index,
float space_mat[4][4])
static void vertex_dupli(const VertexDupliData *vdd,
int index,
const float co[3],
const short no[3])
{
float obmat[4][4];
Object *inst_ob = vdd->inst_ob;
DupliObject *dob;
float obmat[4][4], space_mat[4][4];
/* Make offset relative to child using relative child transform. */
mul_mat3_m4_v3(child_imat, space_mat[3]);
/* obmat is transform to vertex */
get_duplivert_transform(co, no, vdd->use_rotation, inst_ob->trackflag, inst_ob->upflag, obmat);
/* make offset relative to inst_ob using relative child transform */
mul_mat3_m4_v3((float(*)[4])vdd->child_imat, obmat[3]);
/* apply obmat _after_ the local vertex transform */
mul_m4_m4m4(obmat, inst_ob->obmat, obmat);
/* Apply `obmat` _after_ the local vertex transform. */
mul_m4_m4m4(obmat, child->obmat, space_mat);
/* space matrix is constructed by removing obmat transform,
* this yields the worldspace transform for recursive duplis
*/
mul_m4_m4m4(space_mat, obmat, inst_ob->imat);
DupliObject *dob = make_dupli(ctx, child, obmat, index);
dob = make_dupli(vdd->ctx, vdd->inst_ob, obmat, index);
/* Recursion. */
make_recursive_duplis(ctx, child, space_mat, index);
return dob;
}
static void make_child_duplis_verts_from_mesh(const DupliContext *ctx,
void *userdata,
Object *child)
{
VertexDupliData_Mesh *vdd = userdata;
const MVert *mvert = vdd->mvert;
const int totvert = vdd->totvert;
invert_m4_m4(child->imat, child->obmat);
/* Relative transform from parent to child space. */
float child_imat[4][4];
mul_m4_m4m4(child_imat, child->imat, ctx->object->obmat);
const MVert *mv = mvert;
for (int i = 0; i < totvert; i++, mv++) {
const float no[3] = {mv->no[0], mv->no[1], mv->no[2]};
/* space_mat is transform to vertex. */
float space_mat[4][4];
get_duplivert_transform(
mv->co, no, vdd->use_rotation, child->trackflag, child->upflag, space_mat);
DupliObject *dob = vertex_dupli(ctx, child, child_imat, i, space_mat);
if (vdd->orco) {
copy_v3_v3(dob->orco, vdd->orco[i]);
}
if (vdd->orco) {
copy_v3_v3(dob->orco, vdd->orco[index]);
}
/* recursion */
make_recursive_duplis(vdd->ctx, vdd->inst_ob, space_mat, index);
}
static void make_child_duplis_verts_from_bmesh(const DupliContext *ctx,
void *userdata,
Object *child)
static void make_child_duplis_verts(const DupliContext *ctx, void *userdata, Object *child)
{
VertexDupliData_BMesh *vdd = userdata;
BMEditMesh *em = vdd->em;
VertexDupliData *vdd = userdata;
Mesh *me_eval = vdd->me_eval;
vdd->inst_ob = child;
invert_m4_m4(child->imat, child->obmat);
/* Relative transform from parent to child space. */
float child_imat[4][4];
mul_m4_m4m4(child_imat, child->imat, ctx->object->obmat);
/* relative transform from parent to child space */
mul_m4_m4m4(vdd->child_imat, child->imat, ctx->object->obmat);
BMVert *v;
BMIter iter;
int i;
const float(*vert_coords)[3] = vdd->vert_coords;
const float(*vert_normals)[3] = vdd->vert_normals;
BM_ITER_MESH_INDEX (v, &iter, em->bm, BM_VERTS_OF_MESH, i) {
const float *co, *no;
if (vert_coords != NULL) {
co = vert_coords[i];
no = vert_normals[i];
}
else {
co = v->co;
no = v->no;
}
/* space_mat is transform to vertex. */
float space_mat[4][4];
get_duplivert_transform(co, no, vdd->use_rotation, child->trackflag, child->upflag, space_mat);
DupliObject *dob = vertex_dupli(ctx, child, child_imat, i, space_mat);
if (vdd->has_orco) {
copy_v3_v3(dob->orco, v->co);
}
const MVert *mvert = me_eval->mvert;
for (int i = 0; i < me_eval->totvert; i++) {
vertex_dupli(vdd, i, mvert[i].co, mvert[i].no);
}
}
static void make_duplis_verts(const DupliContext *ctx)
{
Object *parent = ctx->object;
VertexDupliData vdd;
const bool use_rotation = parent->transflag & OB_DUPLIROT;
vdd.ctx = ctx;
vdd.use_rotation = parent->transflag & OB_DUPLIROT;
/* Gather mesh info. */
BMEditMesh *em = NULL;
const float(*vert_coords)[3] = NULL;
const float(*vert_normals)[3] = NULL;
Mesh *me_eval = mesh_data_from_duplicator_object(parent, &em, &vert_coords, &vert_normals);
if (em == NULL && me_eval == NULL) {
return;
/* gather mesh info */
{
vdd.edit_mesh = BKE_editmesh_from_object(parent);
/* We do not need any render-specific handling anymore, depsgraph takes care of that. */
/* NOTE: Do direct access to the evaluated mesh: this function is used
* during meta balls evaluation. But even without those all the objects
* which are needed for correct instancing are already evaluated. */
if (vdd.edit_mesh != NULL) {
vdd.me_eval = vdd.edit_mesh->mesh_eval_cage;
}
else {
vdd.me_eval = BKE_object_get_evaluated_mesh(parent);
}
if (vdd.me_eval == NULL) {
return;
}
vdd.orco = CustomData_get_layer(&vdd.me_eval->vdata, CD_ORCO);
vdd.totvert = vdd.me_eval->totvert;
}
if (em != NULL) {
VertexDupliData_BMesh vdd = {
.em = em,
.vert_coords = vert_coords,
.vert_normals = vert_normals,
.has_orco = (vert_coords != NULL),
.use_rotation = use_rotation,
};
make_child_duplis(ctx, &vdd, make_child_duplis_verts_from_bmesh);
}
else {
VertexDupliData_Mesh vdd = {
.use_rotation = use_rotation,
};
vdd.orco = CustomData_get_layer(&me_eval->vdata, CD_ORCO);
vdd.totvert = me_eval->totvert;
vdd.mvert = me_eval->mvert;
make_child_duplis(ctx, &vdd, make_child_duplis_verts_from_mesh);
}
make_child_duplis(ctx, &vdd, make_child_duplis_verts);
vdd.me_eval = NULL;
}
static const DupliGenerator gen_dupli_verts = {
@ -779,55 +674,37 @@ static const DupliGenerator gen_dupli_verts_pointcloud = {
/** \name Dupli-Faces Implementation (#OB_DUPLIFACES)
* \{ */
typedef struct FaceDupliData_Mesh {
typedef struct FaceDupliData {
Mesh *me_eval;
int totface;
MPoly *mpoly;
MLoop *mloop;
MVert *mvert;
float (*orco)[3];
MLoopUV *mloopuv;
bool use_scale;
} FaceDupliData_Mesh;
} FaceDupliData;
typedef struct FaceDupliData_BMesh {
BMEditMesh *em;
bool has_orco, has_uvs;
int cd_loop_uv_offset;
/* Can be NULL. */
const float (*vert_coords)[3];
bool use_scale;
} FaceDupliData_BMesh;
static void get_dupliface_transform_from_coords(const float coords[][3],
const int coords_len,
const bool use_scale,
const float scale_fac,
float r_mat[4][4])
static void get_dupliface_transform(
MPoly *mpoly, MLoop *mloop, MVert *mvert, bool use_scale, float scale_fac, float mat[4][4])
{
float loc[3], quat[4], scale, size[3];
float f_no[3];
/* location */
{
const float w = 1.0f / (float)coords_len;
zero_v3(loc);
for (int i = 0; i < coords_len; i++) {
madd_v3_v3fl(loc, coords[i], w);
}
}
BKE_mesh_calc_poly_center(mpoly, mloop, mvert, loc);
/* rotation */
{
float f_no[3];
cross_poly_v3(f_no, coords, (uint)coords_len);
normalize_v3(f_no);
tri_to_quat_ex(quat, coords[0], coords[1], coords[2], f_no);
const float *v1, *v2, *v3;
BKE_mesh_calc_poly_normal(mpoly, mloop, mvert, f_no);
v1 = mvert[mloop[0].v].co;
v2 = mvert[mloop[1].v].co;
v3 = mvert[mloop[2].v].co;
tri_to_quat_ex(quat, v1, v2, v3, f_no);
}
/* scale */
if (use_scale) {
const float area = area_poly_v3(coords, (uint)coords_len);
float area = BKE_mesh_calc_poly_area(mpoly, mloop, mvert);
scale = sqrtf(area) * scale_fac;
}
else {
@ -835,108 +712,58 @@ static void get_dupliface_transform_from_coords(const float coords[][3],
}
size[0] = size[1] = size[2] = scale;
loc_quat_size_to_mat4(r_mat, loc, quat, size);
loc_quat_size_to_mat4(mat, loc, quat, size);
}
static void get_dupliface_transform_from_mesh(const MPoly *mpoly,
const MLoop *mloopstart,
const MVert *mvert,
const bool use_scale,
const float scale_fac,
float r_mat[4][4])
static void make_child_duplis_faces(const DupliContext *ctx, void *userdata, Object *inst_ob)
{
const MLoop *l_iter = mloopstart;
float(*coords)[3] = BLI_array_alloca(coords, (size_t)mpoly->totloop);
for (int i = 0; i < mpoly->totloop; i++, l_iter++) {
copy_v3_v3(coords[i], mvert[l_iter->v].co);
}
get_dupliface_transform_from_coords(coords, mpoly->totloop, use_scale, scale_fac, r_mat);
}
static void get_dupliface_transform_from_bmesh(BMFace *f,
const float (*vert_coords)[3],
const bool use_scale,
const float scale_fac,
float r_mat[4][4])
{
BMLoop *l_first, *l_iter;
float(*coords)[3] = BLI_array_alloca(coords, (size_t)f->len);
int i = 0;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
if (vert_coords != NULL) {
do {
copy_v3_v3(coords[i], vert_coords[BM_elem_index_get(l_iter->v)]);
} while ((void)(i++), (l_iter = l_iter->next) != l_first);
}
else {
do {
copy_v3_v3(coords[i], l_iter->v->co);
} while ((void)(i++), (l_iter = l_iter->next) != l_first);
}
get_dupliface_transform_from_coords(coords, f->len, use_scale, scale_fac, r_mat);
}
static DupliObject *face_dupli(const DupliContext *ctx,
Object *child,
const float child_imat[4][4],
const int index,
float obmat[4][4])
{
float space_mat[4][4];
/* Make offset relative to child using relative child transform. */
mul_mat3_m4_v3(child_imat, obmat[3]);
/* XXX ugly hack to ensure same behavior as in master this should not be needed,
* #Object.parentinv is not consistent outside of parenting. */
{
float imat[3][3];
copy_m3_m4(imat, child->parentinv);
mul_m4_m3m4(obmat, imat, obmat);
}
/* Apply `obmat` _after_ the local face transform. */
mul_m4_m4m4(obmat, child->obmat, obmat);
/* Space matrix is constructed by removing \a obmat transform,
* this yields the world-space transform for recursive duplis. */
mul_m4_m4m4(space_mat, obmat, child->imat);
DupliObject *dob = make_dupli(ctx, child, obmat, index);
/* Recursion. */
make_recursive_duplis(ctx, child, space_mat, index);
return dob;
}
static void make_child_duplis_faces_from_mesh(const DupliContext *ctx,
void *userdata,
Object *child)
{
FaceDupliData_Mesh *fdd = userdata;
const MPoly *mpoly = fdd->mpoly, *mp;
const MLoop *mloop = fdd->mloop;
const MVert *mvert = fdd->mvert;
const float(*orco)[3] = fdd->orco;
const MLoopUV *mloopuv = fdd->mloopuv;
const int totface = fdd->totface;
int a;
FaceDupliData *fdd = userdata;
MPoly *mpoly = fdd->mpoly, *mp;
MLoop *mloop = fdd->mloop;
MVert *mvert = fdd->mvert;
float(*orco)[3] = fdd->orco;
MLoopUV *mloopuv = fdd->mloopuv;
int a, totface = fdd->totface;
float child_imat[4][4];
DupliObject *dob;
invert_m4_m4(child->imat, child->obmat);
/* Relative transform from parent to child space. */
mul_m4_m4m4(child_imat, child->imat, ctx->object->obmat);
const float scale_fac = ctx->object->instance_faces_scale;
invert_m4_m4(inst_ob->imat, inst_ob->obmat);
/* relative transform from parent to child space */
mul_m4_m4m4(child_imat, inst_ob->imat, ctx->object->obmat);
for (a = 0, mp = mpoly; a < totface; a++, mp++) {
const MLoop *loopstart = mloop + mp->loopstart;
float obmat[4][4];
MLoop *loopstart = mloop + mp->loopstart;
float space_mat[4][4], obmat[4][4];
/* `obmat` is transform to face. */
get_dupliface_transform_from_mesh(mp, loopstart, mvert, fdd->use_scale, scale_fac, obmat);
DupliObject *dob = face_dupli(ctx, child, child_imat, a, obmat);
if (UNLIKELY(mp->totloop < 3)) {
continue;
}
/* obmat is transform to face */
get_dupliface_transform(
mp, loopstart, mvert, fdd->use_scale, ctx->object->instance_faces_scale, obmat);
/* make offset relative to inst_ob using relative child transform */
mul_mat3_m4_v3(child_imat, obmat[3]);
/* XXX ugly hack to ensure same behavior as in master
* this should not be needed, parentinv is not consistent
* outside of parenting.
*/
{
float imat[3][3];
copy_m3_m4(imat, inst_ob->parentinv);
mul_m4_m3m4(obmat, imat, obmat);
}
/* apply obmat _after_ the local face transform */
mul_m4_m4m4(obmat, inst_ob->obmat, obmat);
/* space matrix is constructed by removing obmat transform,
* this yields the worldspace transform for recursive duplis
*/
mul_m4_m4m4(space_mat, obmat, inst_ob->imat);
dob = make_dupli(ctx, inst_ob, obmat, a);
const float w = 1.0f / (float)mp->totloop;
if (orco) {
@ -949,92 +776,51 @@ static void make_child_duplis_faces_from_mesh(const DupliContext *ctx,
madd_v2_v2fl(dob->uv, mloopuv[mp->loopstart + j].uv, w);
}
}
}
}
static void make_child_duplis_faces_from_bmesh(const DupliContext *ctx,
void *userdata,
Object *child)
{
FaceDupliData_BMesh *fdd = userdata;
BMEditMesh *em = fdd->em;
float child_imat[4][4];
int a;
BMFace *f;
BMIter iter;
const float(*vert_coords)[3] = fdd->vert_coords;
BLI_assert((vert_coords == NULL) || (em->bm->elem_index_dirty & BM_VERT) == 0);
invert_m4_m4(child->imat, child->obmat);
/* Relative transform from parent to child space. */
mul_m4_m4m4(child_imat, child->imat, ctx->object->obmat);
const float scale_fac = ctx->object->instance_faces_scale;
BM_ITER_MESH_INDEX (f, &iter, em->bm, BM_FACES_OF_MESH, a) {
float obmat[4][4];
/* `obmat` is transform to face. */
get_dupliface_transform_from_bmesh(f, vert_coords, fdd->use_scale, scale_fac, obmat);
DupliObject *dob = face_dupli(ctx, child, child_imat, a, obmat);
if (fdd->has_orco) {
const float w = 1.0f / (float)f->len;
BMLoop *l_first, *l_iter;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
madd_v3_v3fl(dob->orco, l_iter->v->co, w);
} while ((l_iter = l_iter->next) != l_first);
}
if (fdd->has_uvs) {
BM_face_uv_calc_center_median(f, fdd->cd_loop_uv_offset, dob->uv);
}
/* recursion */
make_recursive_duplis(ctx, inst_ob, space_mat, a);
}
}
static void make_duplis_faces(const DupliContext *ctx)
{
Object *parent = ctx->object;
const bool use_scale = ((parent->transflag & OB_DUPLIFACES_SCALE) != 0);
FaceDupliData fdd;
/* Gather mesh info. */
BMEditMesh *em = NULL;
const float(*vert_coords)[3] = NULL;
Mesh *me_eval = mesh_data_from_duplicator_object(parent, &em, &vert_coords, NULL);
if (em == NULL && me_eval == NULL) {
return;
}
fdd.use_scale = ((parent->transflag & OB_DUPLIFACES_SCALE) != 0);
if (em != NULL) {
FaceDupliData_BMesh fdd = {
.em = em,
.use_scale = use_scale,
.has_orco = (vert_coords != NULL),
.vert_coords = vert_coords,
};
const int uv_idx = CustomData_get_render_layer(&em->bm->ldata, CD_MLOOPUV);
if (uv_idx != -1) {
fdd.has_uvs = true;
fdd.cd_loop_uv_offset = CustomData_get_n_offset(&em->bm->ldata, CD_MLOOPUV, uv_idx);
/* gather mesh info */
{
BMEditMesh *em = BKE_editmesh_from_object(parent);
/* We do not need any render-smecific handling anymore, depsgraph takes care of that. */
/* NOTE: Do direct access to the evaluated mesh: this function is used
* during meta balls evaluation. But even without those all the objects
* which are needed for correct instancing are already evaluated. */
if (em != NULL) {
fdd.me_eval = em->mesh_eval_cage;
}
make_child_duplis(ctx, &fdd, make_child_duplis_faces_from_bmesh);
}
else {
FaceDupliData_Mesh fdd = {
.use_scale = use_scale,
.me_eval = me_eval,
};
else {
fdd.me_eval = BKE_object_get_evaluated_mesh(parent);
}
if (fdd.me_eval == NULL) {
return;
}
fdd.orco = CustomData_get_layer(&fdd.me_eval->vdata, CD_ORCO);
const int uv_idx = CustomData_get_render_layer(&fdd.me_eval->ldata, CD_MLOOPUV);
fdd.mloopuv = CustomData_get_layer_n(&fdd.me_eval->ldata, CD_MLOOPUV, uv_idx);
fdd.totface = me_eval->totpoly;
fdd.mpoly = me_eval->mpoly;
fdd.mloop = me_eval->mloop;
fdd.mvert = me_eval->mvert;
make_child_duplis(ctx, &fdd, make_child_duplis_faces_from_mesh);
fdd.totface = fdd.me_eval->totpoly;
fdd.mpoly = fdd.me_eval->mpoly;
fdd.mloop = fdd.me_eval->mloop;
fdd.mvert = fdd.me_eval->mvert;
}
make_child_duplis(ctx, &fdd, make_child_duplis_faces);
fdd.me_eval = NULL;
}
static const DupliGenerator gen_dupli_faces = {