Cycles: improve SSS Fresnel and retro-reflection in Principled BSDF

For details see the "Extending the Disney BRDF to a BSDF with Integrated
Subsurface Scattering" paper.

We split the diffuse BSDF into a lambertian and retro-reflection component.
The retro-reflection component is always handled as a BSDF, while the
lambertian component can be replaced by a BSSRDF.

For the BSSRDF case, we compute Fresnel separately at the entry and exit
points, which may have different normals. As the scattering radius decreases
this converges to the BSDF case.

A downside is that this increases noise for subsurface scattering in the
Principled BSDF, due to some samples going to the retro-reflection component.
However the previous logic (also in 2.93) was simple wrong, using a
non-sensical view direction vector at the exit point. We use an importance
sampling weight estimate for the retro-reflection to try to better balance
samples between the BSDF and BSSRDF.

Differential Revision: https://developer.blender.org/D12801
This commit is contained in:
Brecht Van Lommel 2021-10-08 19:44:56 +02:00
parent 73a05ff9e8
commit a94343a8af
Notes: blender-bot 2023-02-14 07:18:54 +01:00
Referenced by issue #94758, Harsh lines in `Denoising Albedo` with subsurface scattering materials
Referenced by issue #92691, Cycles: SSS gives different result rendering in Blender 3.0 beta
10 changed files with 125 additions and 77 deletions

View File

@ -128,7 +128,6 @@ ccl_device_inline int bsdf_sample(const KernelGlobals *kg,
switch (sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_ID:
label = bsdf_diffuse_sample(sc,
Ng,
sd->I,
@ -401,7 +400,6 @@ ccl_device_inline int bsdf_sample(const KernelGlobals *kg,
break;
# ifdef __PRINCIPLED__
case CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID:
label = bsdf_principled_diffuse_sample(sc,
Ng,
sd->I,
@ -481,7 +479,6 @@ ccl_device_inline
if (!is_transmission) {
switch (sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_ID:
eval = bsdf_diffuse_eval_reflect(sc, sd->I, omega_in, pdf);
break;
#ifdef __SVM__
@ -550,7 +547,6 @@ ccl_device_inline
break;
# ifdef __PRINCIPLED__
case CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID:
eval = bsdf_principled_diffuse_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_PRINCIPLED_SHEEN_ID:
@ -576,7 +572,6 @@ ccl_device_inline
else {
switch (sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_ID:
eval = bsdf_diffuse_eval_transmit(sc, sd->I, omega_in, pdf);
break;
#ifdef __SVM__
@ -637,7 +632,6 @@ ccl_device_inline
break;
# ifdef __PRINCIPLED__
case CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID:
eval = bsdf_principled_diffuse_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_PRINCIPLED_SHEEN_ID:

View File

@ -19,50 +19,98 @@
/* DISNEY PRINCIPLED DIFFUSE BRDF
*
* Shading model by Brent Burley (Disney): "Physically Based Shading at Disney" (2012)
*
* "Extending the Disney BRDF to a BSDF with Integrated Subsurface Scattering" (2015)
* For the separation of retro-reflection, "2.3 Dielectric BRDF with integrated
* subsurface scattering"
*/
#include "kernel/closure/bsdf_util.h"
CCL_NAMESPACE_BEGIN
enum PrincipledDiffuseBsdfComponents {
PRINCIPLED_DIFFUSE_FULL = 1,
PRINCIPLED_DIFFUSE_LAMBERT = 2,
PRINCIPLED_DIFFUSE_LAMBERT_EXIT = 4,
PRINCIPLED_DIFFUSE_RETRO_REFLECTION = 8,
};
typedef ccl_addr_space struct PrincipledDiffuseBsdf {
SHADER_CLOSURE_BASE;
float roughness;
int components;
} PrincipledDiffuseBsdf;
static_assert(sizeof(ShaderClosure) >= sizeof(PrincipledDiffuseBsdf),
"PrincipledDiffuseBsdf is too large!");
ccl_device float3 calculate_principled_diffuse_brdf(
ccl_device int bsdf_principled_diffuse_setup(PrincipledDiffuseBsdf *bsdf)
{
bsdf->type = CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID;
return SD_BSDF | SD_BSDF_HAS_EVAL;
}
ccl_device float3 bsdf_principled_diffuse_compute_brdf(
const PrincipledDiffuseBsdf *bsdf, float3 N, float3 V, float3 L, float *pdf)
{
float NdotL = dot(N, L);
const float NdotL = dot(N, L);
if (NdotL <= 0) {
return make_float3(0.0f, 0.0f, 0.0f);
}
float NdotV = dot(N, V);
const float NdotV = dot(N, V);
/* H = normalize(L + V); // Bisector of an angle between L and V.
* LH2 = 2 * dot(L, H)^2 = 2cos(x)^2 = cos(2x) + 1 = dot(L, V) + 1,
* half-angle x between L and V is at most 90 deg
*/
float LH2 = dot(L, V) + 1;
const float FV = schlick_fresnel(NdotV);
const float FL = schlick_fresnel(NdotL);
float FL = schlick_fresnel(NdotL), FV = schlick_fresnel(NdotV);
const float Fd90 = 0.5f + LH2 * bsdf->roughness;
float Fd = (1.0f - FL + Fd90 * FL) * (1.0f - FV + Fd90 * FV);
float f = 0.0f;
float value = M_1_PI_F * NdotL * Fd;
/* Lambertian component. */
if (bsdf->components & (PRINCIPLED_DIFFUSE_FULL | PRINCIPLED_DIFFUSE_LAMBERT)) {
f += (1.0f - 0.5f * FV) * (1.0f - 0.5f * FL);
}
else if (bsdf->components & PRINCIPLED_DIFFUSE_LAMBERT_EXIT) {
f += (1.0f - 0.5f * FL);
}
/* Retro-reflection component. */
if (bsdf->components & (PRINCIPLED_DIFFUSE_FULL | PRINCIPLED_DIFFUSE_RETRO_REFLECTION)) {
/* H = normalize(L + V); // Bisector of an angle between L and V
* LH2 = 2 * dot(L, H)^2 = 2cos(x)^2 = cos(2x) + 1 = dot(L, V) + 1,
* half-angle x between L and V is at most 90 deg. */
const float LH2 = dot(L, V) + 1;
const float RR = bsdf->roughness * LH2;
f += RR * (FL + FV + FL * FV * (RR - 1.0f));
}
float value = M_1_PI_F * NdotL * f;
return make_float3(value, value, value);
}
ccl_device int bsdf_principled_diffuse_setup(PrincipledDiffuseBsdf *bsdf)
/* Compute Fresnel at entry point, to be compbined with PRINCIPLED_DIFFUSE_LAMBERT_EXIT
* at the exit point to get the complete BSDF. */
ccl_device_inline float bsdf_principled_diffuse_compute_entry_fresnel(const float NdotV)
{
const float FV = schlick_fresnel(NdotV);
return (1.0f - 0.5f * FV);
}
/* Ad-hoc weight adjusment to avoid retro-reflection taking away half the
* samples from BSSRDF. */
ccl_device_inline float bsdf_principled_diffuse_retro_reflection_sample_weight(
PrincipledDiffuseBsdf *bsdf, const float3 I)
{
return bsdf->roughness * schlick_fresnel(dot(bsdf->N, I));
}
ccl_device int bsdf_principled_diffuse_setup(PrincipledDiffuseBsdf *bsdf, int components)
{
bsdf->type = CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID;
bsdf->components = components;
return SD_BSDF | SD_BSDF_HAS_EVAL;
}
@ -79,7 +127,7 @@ ccl_device float3 bsdf_principled_diffuse_eval_reflect(const ShaderClosure *sc,
if (dot(N, omega_in) > 0.0f) {
*pdf = fmaxf(dot(N, omega_in), 0.0f) * M_1_PI_F;
return calculate_principled_diffuse_brdf(bsdf, N, V, L, pdf);
return bsdf_principled_diffuse_compute_brdf(bsdf, N, V, L, pdf);
}
else {
*pdf = 0.0f;
@ -115,7 +163,7 @@ ccl_device int bsdf_principled_diffuse_sample(const ShaderClosure *sc,
sample_cos_hemisphere(N, randu, randv, omega_in, pdf);
if (dot(Ng, *omega_in) > 0) {
*eval = calculate_principled_diffuse_brdf(bsdf, N, I, *omega_in, pdf);
*eval = bsdf_principled_diffuse_compute_brdf(bsdf, N, I, *omega_in, pdf);
#ifdef __RAY_DIFFERENTIALS__
// TODO: find a better approximation for the diffuse bounce

View File

@ -277,10 +277,27 @@ ccl_device_inline Bssrdf *bssrdf_alloc(ShaderData *sd, float3 weight)
ccl_device int bssrdf_setup(ShaderData *sd, Bssrdf *bssrdf, ClosureType type, const float ior)
{
int flag = 0;
/* Add retro-reflection component as separate diffuse BSDF. */
if (bssrdf->roughness != FLT_MAX) {
PrincipledDiffuseBsdf *bsdf = (PrincipledDiffuseBsdf *)bsdf_alloc(
sd, sizeof(PrincipledDiffuseBsdf), bssrdf->weight);
if (bsdf) {
bsdf->N = bssrdf->N;
bsdf->roughness = bssrdf->roughness;
flag |= bsdf_principled_diffuse_setup(bsdf, PRINCIPLED_DIFFUSE_RETRO_REFLECTION);
/* Ad-hoc weight adjusment to avoid retro-reflection taking away half the
* samples from BSSRDF. */
bsdf->sample_weight *= bsdf_principled_diffuse_retro_reflection_sample_weight(bsdf, sd->I);
}
}
/* Verify if the radii are large enough to sample without precision issues. */
int bssrdf_channels = 3;
float3 diffuse_weight = make_float3(0.0f, 0.0f, 0.0f);
/* Verify if the radii are large enough to sample without precision issues. */
if (bssrdf->radius.x < BSSRDF_MIN_RADIUS) {
diffuse_weight.x = bssrdf->weight.x;
bssrdf->weight.x = 0.0f;
@ -304,17 +321,13 @@ ccl_device int bssrdf_setup(ShaderData *sd, Bssrdf *bssrdf, ClosureType type, co
/* Add diffuse BSDF if any radius too small. */
#ifdef __PRINCIPLED__
if (bssrdf->roughness != FLT_MAX) {
float roughness = bssrdf->roughness;
float3 N = bssrdf->N;
PrincipledDiffuseBsdf *bsdf = (PrincipledDiffuseBsdf *)bsdf_alloc(
sd, sizeof(PrincipledDiffuseBsdf), diffuse_weight);
if (bsdf) {
bsdf->type = CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID;
bsdf->N = N;
bsdf->roughness = roughness;
flag |= bsdf_principled_diffuse_setup(bsdf);
bsdf->N = bssrdf->N;
bsdf->roughness = bssrdf->roughness;
flag |= bsdf_principled_diffuse_setup(bsdf, PRINCIPLED_DIFFUSE_LAMBERT);
}
}
else
@ -323,7 +336,6 @@ ccl_device int bssrdf_setup(ShaderData *sd, Bssrdf *bssrdf, ClosureType type, co
DiffuseBsdf *bsdf = (DiffuseBsdf *)bsdf_alloc(sd, sizeof(DiffuseBsdf), diffuse_weight);
if (bsdf) {
bsdf->type = CLOSURE_BSDF_BSSRDF_ID;
bsdf->N = bssrdf->N;
flag |= bsdf_diffuse_setup(bsdf);
}

View File

@ -378,11 +378,11 @@ ccl_device bool integrate_surface(INTEGRATOR_STATE_ARGS,
}
#ifdef __SUBSURFACE__
if (INTEGRATOR_STATE(path, flag) & PATH_RAY_SUBSURFACE) {
if (path_flag & PATH_RAY_SUBSURFACE) {
/* When coming from inside subsurface scattering, setup a diffuse
* closure to perform lighting at the exit point. */
subsurface_shader_data_setup(INTEGRATOR_STATE_PASS, &sd, path_flag);
INTEGRATOR_STATE_WRITE(path, flag) &= ~PATH_RAY_SUBSURFACE;
subsurface_shader_data_setup(INTEGRATOR_STATE_PASS, &sd);
}
#endif

View File

@ -99,7 +99,6 @@ KERNEL_STRUCT_BEGIN(subsurface)
KERNEL_STRUCT_MEMBER(subsurface, float3, albedo, KERNEL_FEATURE_SUBSURFACE)
KERNEL_STRUCT_MEMBER(subsurface, float3, radius, KERNEL_FEATURE_SUBSURFACE)
KERNEL_STRUCT_MEMBER(subsurface, float, anisotropy, KERNEL_FEATURE_SUBSURFACE)
KERNEL_STRUCT_MEMBER(subsurface, float, roughness, KERNEL_FEATURE_SUBSURFACE)
KERNEL_STRUCT_END(subsurface)
/********************************** Volume Stack ******************************/

View File

@ -47,7 +47,7 @@ ccl_device int subsurface_bounce(INTEGRATOR_STATE_ARGS, ShaderData *sd, const Sh
/* Setup ray into surface. */
INTEGRATOR_STATE_WRITE(ray, P) = sd->P;
INTEGRATOR_STATE_WRITE(ray, D) = sd->N;
INTEGRATOR_STATE_WRITE(ray, D) = bssrdf->N;
INTEGRATOR_STATE_WRITE(ray, t) = FLT_MAX;
INTEGRATOR_STATE_WRITE(ray, dP) = differential_make_compact(sd->dP);
INTEGRATOR_STATE_WRITE(ray, dD) = differential_zero_compact();
@ -56,13 +56,20 @@ ccl_device int subsurface_bounce(INTEGRATOR_STATE_ARGS, ShaderData *sd, const Sh
INTEGRATOR_STATE_WRITE(isect, Ng) = sd->Ng;
INTEGRATOR_STATE_WRITE(isect, object) = sd->object;
/* Pass BSSRDF parameters. */
const uint32_t path_flag = INTEGRATOR_STATE_WRITE(path, flag);
INTEGRATOR_STATE_WRITE(path, flag) = (path_flag & ~PATH_RAY_CAMERA) |
((sc->type == CLOSURE_BSSRDF_BURLEY_ID) ?
PATH_RAY_SUBSURFACE_DISK :
PATH_RAY_SUBSURFACE_RANDOM_WALK);
INTEGRATOR_STATE_WRITE(path, throughput) *= shader_bssrdf_sample_weight(sd, sc);
uint32_t path_flag = (INTEGRATOR_STATE(path, flag) & ~PATH_RAY_CAMERA) |
((sc->type == CLOSURE_BSSRDF_BURLEY_ID) ? PATH_RAY_SUBSURFACE_DISK :
PATH_RAY_SUBSURFACE_RANDOM_WALK);
/* Compute weight, optionally including Fresnel from entry point. */
float3 weight = shader_bssrdf_sample_weight(sd, sc);
# ifdef __PRINCIPLED__
if (bssrdf->roughness != FLT_MAX) {
path_flag |= PATH_RAY_SUBSURFACE_USE_FRESNEL;
}
# endif
INTEGRATOR_STATE_WRITE(path, throughput) *= weight;
INTEGRATOR_STATE_WRITE(path, flag) = path_flag;
/* Advance random number offset for bounce. */
INTEGRATOR_STATE_WRITE(path, rng_offset) += PRNG_BOUNCE_NUM;
@ -73,15 +80,17 @@ ccl_device int subsurface_bounce(INTEGRATOR_STATE_ARGS, ShaderData *sd, const Sh
}
}
/* Pass BSSRDF parameters. */
INTEGRATOR_STATE_WRITE(subsurface, albedo) = bssrdf->albedo;
INTEGRATOR_STATE_WRITE(subsurface, radius) = bssrdf->radius;
INTEGRATOR_STATE_WRITE(subsurface, roughness) = bssrdf->roughness;
INTEGRATOR_STATE_WRITE(subsurface, anisotropy) = bssrdf->anisotropy;
return LABEL_SUBSURFACE_SCATTER;
}
ccl_device void subsurface_shader_data_setup(INTEGRATOR_STATE_ARGS, ShaderData *sd)
ccl_device void subsurface_shader_data_setup(INTEGRATOR_STATE_ARGS,
ShaderData *sd,
const uint32_t path_flag)
{
/* Get bump mapped normal from shader evaluation at exit point. */
float3 N = sd->N;
@ -95,21 +104,16 @@ ccl_device void subsurface_shader_data_setup(INTEGRATOR_STATE_ARGS, ShaderData *
sd->num_closure_left = kernel_data.max_closures;
const float3 weight = one_float3();
const float roughness = INTEGRATOR_STATE(subsurface, roughness);
# ifdef __PRINCIPLED__
if (roughness != FLT_MAX) {
if (path_flag & PATH_RAY_SUBSURFACE_USE_FRESNEL) {
PrincipledDiffuseBsdf *bsdf = (PrincipledDiffuseBsdf *)bsdf_alloc(
sd, sizeof(PrincipledDiffuseBsdf), weight);
if (bsdf) {
bsdf->N = N;
bsdf->roughness = roughness;
sd->flag |= bsdf_principled_diffuse_setup(bsdf);
/* replace CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID with this special ID so render passes
* can recognize it as not being a regular Disney principled diffuse closure */
bsdf->type = CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID;
bsdf->roughness = FLT_MAX;
sd->flag |= bsdf_principled_diffuse_setup(bsdf, PRINCIPLED_DIFFUSE_LAMBERT_EXIT);
}
}
else
@ -120,10 +124,6 @@ ccl_device void subsurface_shader_data_setup(INTEGRATOR_STATE_ARGS, ShaderData *
if (bsdf) {
bsdf->N = N;
sd->flag |= bsdf_diffuse_setup(bsdf);
/* replace CLOSURE_BSDF_DIFFUSE_ID with this special ID so render passes
* can recognize it as not being a regular diffuse closure */
bsdf->type = CLOSURE_BSDF_BSSRDF_ID;
}
}
}

View File

@ -159,7 +159,7 @@ ccl_device_forceinline bool _shader_bsdf_exclude(ClosureType type, uint light_sh
return false;
}
if (light_shader_flags & SHADER_EXCLUDE_DIFFUSE) {
if (CLOSURE_IS_BSDF_DIFFUSE(type) || CLOSURE_IS_BSDF_BSSRDF(type)) {
if (CLOSURE_IS_BSDF_DIFFUSE(type)) {
return true;
}
}
@ -201,8 +201,7 @@ ccl_device_inline float _shader_bsdf_multi_eval(const KernelGlobals *kg,
float3 eval = bsdf_eval(kg, sd, sc, omega_in, is_transmission, &bsdf_pdf);
if (bsdf_pdf != 0.0f) {
const bool is_diffuse = (CLOSURE_IS_BSDF_DIFFUSE(sc->type) ||
CLOSURE_IS_BSDF_BSSRDF(sc->type));
const bool is_diffuse = CLOSURE_IS_BSDF_DIFFUSE(sc->type);
bsdf_eval_accum(result_eval, is_diffuse, eval * sc->weight, 1.0f);
sum_pdf += bsdf_pdf * sc->sample_weight;
}
@ -320,8 +319,7 @@ ccl_device int shader_bsdf_sample_closure(const KernelGlobals *kg,
label = bsdf_sample(kg, sd, sc, randu, randv, &eval, omega_in, domega_in, pdf);
if (*pdf != 0.0f) {
const bool is_diffuse = (CLOSURE_IS_BSDF_DIFFUSE(sc->type) ||
CLOSURE_IS_BSDF_BSSRDF(sc->type));
const bool is_diffuse = CLOSURE_IS_BSDF_DIFFUSE(sc->type);
bsdf_eval_init(bsdf_eval, is_diffuse, eval * sc->weight);
if (sd->num_closure > 1) {
@ -401,8 +399,7 @@ ccl_device float3 shader_bsdf_diffuse(const KernelGlobals *kg, const ShaderData
for (int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if (CLOSURE_IS_BSDF_DIFFUSE(sc->type) || CLOSURE_IS_BSSRDF(sc->type) ||
CLOSURE_IS_BSDF_BSSRDF(sc->type))
if (CLOSURE_IS_BSDF_DIFFUSE(sc->type) || CLOSURE_IS_BSSRDF(sc->type))
eval += sc->weight;
}

View File

@ -263,32 +263,34 @@ enum PathRayFlag {
/* Perform subsurface scattering. */
PATH_RAY_SUBSURFACE_RANDOM_WALK = (1 << 20),
PATH_RAY_SUBSURFACE_DISK = (1 << 21),
PATH_RAY_SUBSURFACE = (PATH_RAY_SUBSURFACE_RANDOM_WALK | PATH_RAY_SUBSURFACE_DISK),
PATH_RAY_SUBSURFACE_USE_FRESNEL = (1 << 22),
PATH_RAY_SUBSURFACE = (PATH_RAY_SUBSURFACE_RANDOM_WALK | PATH_RAY_SUBSURFACE_DISK |
PATH_RAY_SUBSURFACE_USE_FRESNEL),
/* Contribute to denoising features. */
PATH_RAY_DENOISING_FEATURES = (1 << 22),
PATH_RAY_DENOISING_FEATURES = (1 << 23),
/* Render pass categories. */
PATH_RAY_REFLECT_PASS = (1 << 23),
PATH_RAY_TRANSMISSION_PASS = (1 << 24),
PATH_RAY_VOLUME_PASS = (1 << 25),
PATH_RAY_REFLECT_PASS = (1 << 24),
PATH_RAY_TRANSMISSION_PASS = (1 << 25),
PATH_RAY_VOLUME_PASS = (1 << 26),
PATH_RAY_ANY_PASS = (PATH_RAY_REFLECT_PASS | PATH_RAY_TRANSMISSION_PASS | PATH_RAY_VOLUME_PASS),
/* Shadow ray is for a light or surface. */
PATH_RAY_SHADOW_FOR_LIGHT = (1 << 26),
PATH_RAY_SHADOW_FOR_LIGHT = (1 << 27),
/* A shadow catcher object was hit and the path was split into two. */
PATH_RAY_SHADOW_CATCHER_HIT = (1 << 27),
PATH_RAY_SHADOW_CATCHER_HIT = (1 << 28),
/* A shadow catcher object was hit and this path traces only shadow catchers, writing them into
* their dedicated pass for later division.
*
* NOTE: Is not covered with `PATH_RAY_ANY_PASS` because shadow catcher does special handling
* which is separate from the light passes. */
PATH_RAY_SHADOW_CATCHER_PASS = (1 << 28),
PATH_RAY_SHADOW_CATCHER_PASS = (1 << 29),
/* Path is evaluating background for an approximate shadow catcher with non-transparent film. */
PATH_RAY_SHADOW_CATCHER_BACKGROUND = (1 << 29),
PATH_RAY_SHADOW_CATCHER_BACKGROUND = (1 << 30),
};
/* Configure ray visibility bits for rays and objects respectively,

View File

@ -221,7 +221,7 @@ ccl_device_noinline int svm_node_closure_bsdf(
bsdf->roughness = roughness;
/* setup bsdf */
sd->flag |= bsdf_principled_diffuse_setup(bsdf);
sd->flag |= bsdf_principled_diffuse_setup(bsdf, PRINCIPLED_DIFFUSE_FULL);
}
}
else if (subsurface > CLOSURE_WEIGHT_CUTOFF) {
@ -255,7 +255,7 @@ ccl_device_noinline int svm_node_closure_bsdf(
bsdf->roughness = roughness;
/* setup bsdf */
sd->flag |= bsdf_principled_diffuse_setup(bsdf);
sd->flag |= bsdf_principled_diffuse_setup(bsdf, PRINCIPLED_DIFFUSE_FULL);
}
}
# endif

View File

@ -538,8 +538,6 @@ typedef enum ClosureType {
CLOSURE_BSDF_HAIR_TRANSMISSION_ID,
/* Special cases */
CLOSURE_BSDF_BSSRDF_ID,
CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID,
CLOSURE_BSDF_TRANSPARENT_ID,
/* BSSRDF */
@ -569,8 +567,6 @@ typedef enum ClosureType {
(type == CLOSURE_BSDF_HAIR_PRINCIPLED_ID))
#define CLOSURE_IS_BSDF_TRANSMISSION(type) \
(type >= CLOSURE_BSDF_REFRACTION_ID && type <= CLOSURE_BSDF_HAIR_TRANSMISSION_ID)
#define CLOSURE_IS_BSDF_BSSRDF(type) \
(type == CLOSURE_BSDF_BSSRDF_ID || type == CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID)
#define CLOSURE_IS_BSDF_SINGULAR(type) \
(type == CLOSURE_BSDF_REFLECTION_ID || type == CLOSURE_BSDF_REFRACTION_ID || \
type == CLOSURE_BSDF_TRANSPARENT_ID)