Cycles: add pointcloud implementation for Metal RT

This is not currently working, with an internal compiler error. However
we are currently using BVH2 instead of Metal RT. So this has no effect for
users, it's being committed to avoid the code getting outdated.

Ref T92573, T92212

Differential Revision: https://developer.blender.org/D13632
This commit is contained in:
Brecht Van Lommel 2022-01-21 14:24:33 +01:00 committed by Brecht Van Lommel
parent 5e51a5e8a4
commit d68ce0e475
Notes: blender-bot 2024-01-31 11:35:08 +01:00
Referenced by issue #92573, Cycles: point cloud geometry improvements
Referenced by issue #92212, Cycles Metal device
5 changed files with 395 additions and 11 deletions

View File

@ -58,6 +58,11 @@ class BVHMetal : public BVH {
id<MTLCommandQueue> queue,
Geometry *const geom,
bool refit);
bool build_BLAS_pointcloud(Progress &progress,
id<MTLDevice> device,
id<MTLCommandQueue> queue,
Geometry *const geom,
bool refit);
bool build_TLAS(Progress &progress, id<MTLDevice> device, id<MTLCommandQueue> queue, bool refit);
};

View File

@ -19,6 +19,7 @@
# include "scene/hair.h"
# include "scene/mesh.h"
# include "scene/object.h"
# include "scene/pointcloud.h"
# include "util/progress.h"
@ -475,6 +476,220 @@ bool BVHMetal::build_BLAS_hair(Progress &progress,
return false;
}
bool BVHMetal::build_BLAS_pointcloud(Progress &progress,
id<MTLDevice> device,
id<MTLCommandQueue> queue,
Geometry *const geom,
bool refit)
{
if (@available(macos 12.0, *)) {
/* Build BLAS for point cloud */
PointCloud *pointcloud = static_cast<PointCloud *>(geom);
if (pointcloud->num_points() == 0) {
return false;
}
/*------------------------------------------------*/
BVH_status("Building pointcloud BLAS | %7d points | %s",
(int)pointcloud->num_points(),
geom->name.c_str());
/*------------------------------------------------*/
const size_t num_points = pointcloud->get_points().size();
const float3 *points = pointcloud->get_points().data();
const float *radius = pointcloud->get_radius().data();
const bool use_fast_trace_bvh = (params.bvh_type == BVH_TYPE_STATIC);
size_t num_motion_steps = 1;
Attribute *motion_keys = pointcloud->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if (motion_blur && pointcloud->get_use_motion_blur() && motion_keys) {
num_motion_steps = pointcloud->get_motion_steps();
}
const size_t num_aabbs = num_motion_steps;
MTLResourceOptions storage_mode;
if (device.hasUnifiedMemory) {
storage_mode = MTLResourceStorageModeShared;
}
else {
storage_mode = MTLResourceStorageModeManaged;
}
/* Allocate a GPU buffer for the AABB data and populate it */
id<MTLBuffer> aabbBuf = [device
newBufferWithLength:num_aabbs * sizeof(MTLAxisAlignedBoundingBox)
options:storage_mode];
MTLAxisAlignedBoundingBox *aabb_data = (MTLAxisAlignedBoundingBox *)[aabbBuf contents];
/* Get AABBs for each motion step */
size_t center_step = (num_motion_steps - 1) / 2;
for (size_t step = 0; step < num_motion_steps; ++step) {
/* The center step for motion vertices is not stored in the attribute */
if (step != center_step) {
size_t attr_offset = (step > center_step) ? step - 1 : step;
points = motion_keys->data_float3() + attr_offset * num_points;
}
for (size_t j = 0; j < num_points; ++j) {
const PointCloud::Point point = pointcloud->get_point(j);
BoundBox bounds = BoundBox::empty;
point.bounds_grow(points, radius, bounds);
const size_t index = step * num_points + j;
aabb_data[index].min = (MTLPackedFloat3 &)bounds.min;
aabb_data[index].max = (MTLPackedFloat3 &)bounds.max;
}
}
if (storage_mode == MTLResourceStorageModeManaged) {
[aabbBuf didModifyRange:NSMakeRange(0, aabbBuf.length)];
}
# if 0
for (size_t i=0; i<num_aabbs && i < 400; i++) {
MTLAxisAlignedBoundingBox& bb = aabb_data[i];
printf(" %d: %.1f,%.1f,%.1f -- %.1f,%.1f,%.1f\n", int(i), bb.min.x, bb.min.y, bb.min.z, bb.max.x, bb.max.y, bb.max.z);
}
# endif
MTLAccelerationStructureGeometryDescriptor *geomDesc;
if (motion_blur) {
std::vector<MTLMotionKeyframeData *> aabb_ptrs;
aabb_ptrs.reserve(num_motion_steps);
for (size_t step = 0; step < num_motion_steps; ++step) {
MTLMotionKeyframeData *k = [MTLMotionKeyframeData data];
k.buffer = aabbBuf;
k.offset = step * num_points * sizeof(MTLAxisAlignedBoundingBox);
aabb_ptrs.push_back(k);
}
MTLAccelerationStructureMotionBoundingBoxGeometryDescriptor *geomDescMotion =
[MTLAccelerationStructureMotionBoundingBoxGeometryDescriptor descriptor];
geomDescMotion.boundingBoxBuffers = [NSArray arrayWithObjects:aabb_ptrs.data()
count:aabb_ptrs.size()];
geomDescMotion.boundingBoxCount = num_points;
geomDescMotion.boundingBoxStride = sizeof(aabb_data[0]);
geomDescMotion.intersectionFunctionTableOffset = 2;
/* Force a single any-hit call, so shadow record-all behavior works correctly */
/* (Match optix behavior: unsigned int build_flags =
* OPTIX_GEOMETRY_FLAG_REQUIRE_SINGLE_ANYHIT_CALL;) */
geomDescMotion.allowDuplicateIntersectionFunctionInvocation = false;
geomDescMotion.opaque = true;
geomDesc = geomDescMotion;
}
else {
MTLAccelerationStructureBoundingBoxGeometryDescriptor *geomDescNoMotion =
[MTLAccelerationStructureBoundingBoxGeometryDescriptor descriptor];
geomDescNoMotion.boundingBoxBuffer = aabbBuf;
geomDescNoMotion.boundingBoxBufferOffset = 0;
geomDescNoMotion.boundingBoxCount = int(num_aabbs);
geomDescNoMotion.boundingBoxStride = sizeof(aabb_data[0]);
geomDescNoMotion.intersectionFunctionTableOffset = 2;
/* Force a single any-hit call, so shadow record-all behavior works correctly */
/* (Match optix behavior: unsigned int build_flags =
* OPTIX_GEOMETRY_FLAG_REQUIRE_SINGLE_ANYHIT_CALL;) */
geomDescNoMotion.allowDuplicateIntersectionFunctionInvocation = false;
geomDescNoMotion.opaque = true;
geomDesc = geomDescNoMotion;
}
MTLPrimitiveAccelerationStructureDescriptor *accelDesc =
[MTLPrimitiveAccelerationStructureDescriptor descriptor];
accelDesc.geometryDescriptors = @[ geomDesc ];
if (motion_blur) {
accelDesc.motionStartTime = 0.0f;
accelDesc.motionEndTime = 1.0f;
accelDesc.motionStartBorderMode = MTLMotionBorderModeVanish;
accelDesc.motionEndBorderMode = MTLMotionBorderModeVanish;
accelDesc.motionKeyframeCount = num_motion_steps;
}
if (!use_fast_trace_bvh) {
accelDesc.usage |= (MTLAccelerationStructureUsageRefit |
MTLAccelerationStructureUsagePreferFastBuild);
}
MTLAccelerationStructureSizes accelSizes = [device
accelerationStructureSizesWithDescriptor:accelDesc];
id<MTLAccelerationStructure> accel_uncompressed = [device
newAccelerationStructureWithSize:accelSizes.accelerationStructureSize];
id<MTLBuffer> scratchBuf = [device newBufferWithLength:accelSizes.buildScratchBufferSize
options:MTLResourceStorageModePrivate];
id<MTLBuffer> sizeBuf = [device newBufferWithLength:8 options:MTLResourceStorageModeShared];
id<MTLCommandBuffer> accelCommands = [queue commandBuffer];
id<MTLAccelerationStructureCommandEncoder> accelEnc =
[accelCommands accelerationStructureCommandEncoder];
if (refit) {
[accelEnc refitAccelerationStructure:accel_struct
descriptor:accelDesc
destination:accel_uncompressed
scratchBuffer:scratchBuf
scratchBufferOffset:0];
}
else {
[accelEnc buildAccelerationStructure:accel_uncompressed
descriptor:accelDesc
scratchBuffer:scratchBuf
scratchBufferOffset:0];
}
if (use_fast_trace_bvh) {
[accelEnc writeCompactedAccelerationStructureSize:accel_uncompressed
toBuffer:sizeBuf
offset:0
sizeDataType:MTLDataTypeULong];
}
[accelEnc endEncoding];
[accelCommands addCompletedHandler:^(id<MTLCommandBuffer> command_buffer) {
/* free temp resources */
[scratchBuf release];
[aabbBuf release];
if (use_fast_trace_bvh) {
/* Compact the accel structure */
uint64_t compressed_size = *(uint64_t *)sizeBuf.contents;
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
id<MTLCommandBuffer> accelCommands = [queue commandBuffer];
id<MTLAccelerationStructureCommandEncoder> accelEnc =
[accelCommands accelerationStructureCommandEncoder];
id<MTLAccelerationStructure> accel = [device
newAccelerationStructureWithSize:compressed_size];
[accelEnc copyAndCompactAccelerationStructure:accel_uncompressed
toAccelerationStructure:accel];
[accelEnc endEncoding];
[accelCommands addCompletedHandler:^(id<MTLCommandBuffer> command_buffer) {
uint64_t allocated_size = [accel allocatedSize];
stats.mem_alloc(allocated_size);
accel_struct = accel;
[accel_uncompressed release];
accel_struct_building = false;
}];
[accelCommands commit];
});
}
else {
/* set our acceleration structure to the uncompressed structure */
accel_struct = accel_uncompressed;
uint64_t allocated_size = [accel_struct allocatedSize];
stats.mem_alloc(allocated_size);
accel_struct_building = false;
}
[sizeBuf release];
}];
accel_struct_building = true;
[accelCommands commit];
return true;
}
return false;
}
bool BVHMetal::build_BLAS(Progress &progress,
id<MTLDevice> device,
id<MTLCommandQueue> queue,
@ -491,6 +706,8 @@ bool BVHMetal::build_BLAS(Progress &progress,
return build_BLAS_mesh(progress, device, queue, geom, refit);
case Geometry::HAIR:
return build_BLAS_hair(progress, device, queue, geom, refit);
case Geometry::POINTCLOUD:
return build_BLAS_pointcloud(progress, device, queue, geom, refit);
default:
return false;
}

View File

@ -36,6 +36,8 @@ enum {
METALRT_FUNC_CURVE_RIBBON_SHADOW,
METALRT_FUNC_CURVE_ALL,
METALRT_FUNC_CURVE_ALL_SHADOW,
METALRT_FUNC_POINT,
METALRT_FUNC_POINT_SHADOW,
METALRT_FUNC_NUM
};

View File

@ -358,6 +358,8 @@ bool MetalDeviceKernels::load(MetalDevice *device, int kernel_type)
"__intersection__curve_ribbon_shadow",
"__intersection__curve_all",
"__intersection__curve_all_shadow",
"__intersection__point",
"__intersection__point_shadow",
};
assert(sizeof(function_names) / sizeof(function_names[0]) == METALRT_FUNC_NUM);
@ -400,36 +402,50 @@ bool MetalDeviceKernels::load(MetalDevice *device, int kernel_type)
NSArray *function_list = nil;
if (device->use_metalrt) {
id<MTLFunction> box_intersect_default = nil;
id<MTLFunction> box_intersect_shadow = nil;
id<MTLFunction> curve_intersect_default = nil;
id<MTLFunction> curve_intersect_shadow = nil;
id<MTLFunction> point_intersect_default = nil;
id<MTLFunction> point_intersect_shadow = nil;
if (device->kernel_features & KERNEL_FEATURE_HAIR) {
/* Add curve intersection programs. */
if (device->kernel_features & KERNEL_FEATURE_HAIR_THICK) {
/* Slower programs for thick hair since that also slows down ribbons.
* Ideally this should not be needed. */
box_intersect_default = rt_intersection_funcs[kernel_type][METALRT_FUNC_CURVE_ALL];
box_intersect_shadow = rt_intersection_funcs[kernel_type][METALRT_FUNC_CURVE_ALL_SHADOW];
curve_intersect_default = rt_intersection_funcs[kernel_type][METALRT_FUNC_CURVE_ALL];
curve_intersect_shadow =
rt_intersection_funcs[kernel_type][METALRT_FUNC_CURVE_ALL_SHADOW];
}
else {
box_intersect_default = rt_intersection_funcs[kernel_type][METALRT_FUNC_CURVE_RIBBON];
box_intersect_shadow =
curve_intersect_default = rt_intersection_funcs[kernel_type][METALRT_FUNC_CURVE_RIBBON];
curve_intersect_shadow =
rt_intersection_funcs[kernel_type][METALRT_FUNC_CURVE_RIBBON_SHADOW];
}
}
if (device->kernel_features & KERNEL_FEATURE_POINTCLOUD) {
point_intersect_default = rt_intersection_funcs[kernel_type][METALRT_FUNC_POINT];
point_intersect_shadow = rt_intersection_funcs[kernel_type][METALRT_FUNC_POINT_SHADOW];
}
table_functions[METALRT_TABLE_DEFAULT] = [NSArray
arrayWithObjects:rt_intersection_funcs[kernel_type][METALRT_FUNC_DEFAULT_TRI],
box_intersect_default ?
box_intersect_default :
curve_intersect_default ?
curve_intersect_default :
rt_intersection_funcs[kernel_type][METALRT_FUNC_DEFAULT_BOX],
point_intersect_default ?
point_intersect_default :
rt_intersection_funcs[kernel_type][METALRT_FUNC_DEFAULT_BOX],
nil];
table_functions[METALRT_TABLE_SHADOW] = [NSArray
arrayWithObjects:rt_intersection_funcs[kernel_type][METALRT_FUNC_SHADOW_TRI],
box_intersect_shadow ?
box_intersect_shadow :
curve_intersect_shadow ?
curve_intersect_shadow :
rt_intersection_funcs[kernel_type][METALRT_FUNC_SHADOW_BOX],
point_intersect_shadow ?
point_intersect_shadow :
rt_intersection_funcs[kernel_type][METALRT_FUNC_SHADOW_BOX],
nil];
table_functions[METALRT_TABLE_LOCAL] = [NSArray
arrayWithObjects:rt_intersection_funcs[kernel_type][METALRT_FUNC_LOCAL_TRI],
rt_intersection_funcs[kernel_type][METALRT_FUNC_LOCAL_BOX],
rt_intersection_funcs[kernel_type][METALRT_FUNC_LOCAL_BOX],
nil];

View File

@ -576,6 +576,150 @@ __intersection__curve_all_shadow(constant KernelParamsMetal &launch_params_metal
return result;
}
#endif /* __HAIR__ */
#ifdef __POINTCLOUD__
ccl_device_inline
void metalrt_intersection_point(constant KernelParamsMetal &launch_params_metal,
ray_data MetalKernelContext::MetalRTIntersectionPayload &payload,
const uint object,
const uint prim,
const uint type,
const float3 ray_origin,
const float3 ray_direction,
float time,
const float ray_tmax,
thread BoundingBoxIntersectionResult &result)
{
# ifdef __VISIBILITY_FLAG__
const uint visibility = payload.visibility;
if ((kernel_tex_fetch(__objects, object).visibility & visibility) == 0) {
return;
}
# endif
float3 P = ray_origin;
float3 dir = ray_direction;
/* The direction is not normalized by default, but the point intersection routine expects that */
float len;
dir = normalize_len(dir, &len);
Intersection isect;
isect.t = ray_tmax;
/* Transform maximum distance into object space. */
if (isect.t != FLT_MAX)
isect.t *= len;
MetalKernelContext context(launch_params_metal);
if (context.point_intersect(NULL, &isect, P, dir, isect.t, object, prim, time, type)) {
result = metalrt_visibility_test<BoundingBoxIntersectionResult, METALRT_HIT_BOUNDING_BOX>(
launch_params_metal, payload, object, prim, isect.u);
if (result.accept) {
result.distance = isect.t / len;
payload.u = isect.u;
payload.v = isect.v;
payload.prim = prim;
payload.type = type;
}
}
}
ccl_device_inline
void metalrt_intersection_point_shadow(constant KernelParamsMetal &launch_params_metal,
ray_data MetalKernelContext::MetalRTIntersectionShadowPayload &payload,
const uint object,
const uint prim,
const uint type,
const float3 ray_origin,
const float3 ray_direction,
float time,
const float ray_tmax,
thread BoundingBoxIntersectionResult &result)
{
const uint visibility = payload.visibility;
float3 P = ray_origin;
float3 dir = ray_direction;
/* The direction is not normalized by default, but the point intersection routine expects that */
float len;
dir = normalize_len(dir, &len);
Intersection isect;
isect.t = ray_tmax;
/* Transform maximum distance into object space */
if (isect.t != FLT_MAX)
isect.t *= len;
MetalKernelContext context(launch_params_metal);
if (context.point_intersect(NULL, &isect, P, dir, isect.t, object, prim, time, type)) {
result.continue_search = metalrt_shadow_all_hit<METALRT_HIT_BOUNDING_BOX>(
launch_params_metal, payload, object, prim, float2(isect.u, isect.v), ray_tmax);
result.accept = !result.continue_search;
if (result.accept) {
result.distance = isect.t / len;
}
}
}
[[intersection(bounding_box, triangle_data, METALRT_TAGS)]]
BoundingBoxIntersectionResult
__intersection__point(constant KernelParamsMetal &launch_params_metal [[buffer(1)]],
ray_data MetalKernelContext::MetalRTIntersectionPayload &payload [[payload]],
const uint object [[user_instance_id]],
const uint primitive_id [[primitive_id]],
const float3 ray_origin [[origin]],
const float3 ray_direction [[direction]],
const float ray_tmax [[max_distance]])
{
const uint prim = primitive_id + kernel_tex_fetch(__object_prim_offset, object);
const int type = kernel_tex_fetch(__objects, object).primitive_type;
BoundingBoxIntersectionResult result;
result.accept = false;
result.continue_search = true;
result.distance = ray_tmax;
metalrt_intersection_point(launch_params_metal, payload, object, prim, type, ray_origin, ray_direction,
# if defined(__METALRT_MOTION__)
payload.time,
# else
0.0f,
# endif
ray_tmax, result);
return result;
}
[[intersection(bounding_box, triangle_data, METALRT_TAGS)]]
BoundingBoxIntersectionResult
__intersection__point_shadow(constant KernelParamsMetal &launch_params_metal [[buffer(1)]],
ray_data MetalKernelContext::MetalRTIntersectionShadowPayload &payload [[payload]],
const uint object [[user_instance_id]],
const uint primitive_id [[primitive_id]],
const float3 ray_origin [[origin]],
const float3 ray_direction [[direction]],
const float ray_tmax [[max_distance]])
{
const uint prim = primitive_id + kernel_tex_fetch(__object_prim_offset, object);
const int type = kernel_tex_fetch(__objects, object).primitive_type;
BoundingBoxIntersectionResult result;
result.accept = false;
result.continue_search = true;
result.distance = ray_tmax;
metalrt_intersection_point_shadow(launch_params_metal, payload, object, prim, type, ray_origin, ray_direction,
# if defined(__METALRT_MOTION__)
payload.time,
# else
0.0f,
# endif
ray_tmax, result);
return result;
}
#endif /* __POINTCLOUD__ */
#endif /* __METALRT__ */