Geometry Nodes: new Distribute Points on Faces node

This adds a replacement for the deprecated Point Distribute node.

Arguments for the name change can be found in T91155.
Descriptions of the sockets are available in D12536.

Thanks to Jarrett Johnson for the initial patch!

Differential Revision: https://developer.blender.org/D12536
This commit is contained in:
Jacques Lucke 2021-09-24 11:50:02 +02:00
parent d8a5b768f0
commit e7ae2840a5
Notes: blender-bot 2023-02-14 09:02:40 +01:00
Referenced by issue #91155, Updated Point Distribute node
11 changed files with 800 additions and 1 deletions

View File

@ -592,6 +592,7 @@ geometry_node_categories = [
NodeItem("GeometryNodeMeshUVSphere"),
]),
GeometryNodeCategory("GEO_POINT", "Point", items=[
NodeItem("GeometryNodeDistributePointsOnFaces", poll=geometry_nodes_fields_poll),
NodeItem("GeometryNodeLegacyPointDistribute", poll=geometry_nodes_fields_legacy_poll),
NodeItem("GeometryNodeLegacyPointInstance", poll=geometry_nodes_fields_legacy_poll),
NodeItem("GeometryNodeLegacyPointSeparate", poll=geometry_nodes_fields_legacy_poll),

View File

@ -715,6 +715,14 @@ class AnonymousAttributeFieldInput : public fn::FieldInput {
{
}
template<typename T> static fn::Field<T> Create(StrongAnonymousAttributeID anonymous_id)
{
const CPPType &type = CPPType::get<T>();
auto field_input = std::make_shared<AnonymousAttributeFieldInput>(std::move(anonymous_id),
type);
return fn::Field<T>{field_input};
}
const GVArray *get_varray_for_context(const fn::FieldContext &context,
IndexMask mask,
ResourceScope &scope) const override;

View File

@ -1500,6 +1500,7 @@ int ntreeTexExecTree(struct bNodeTree *ntree,
#define GEO_NODE_STRING_JOIN 1087
#define GEO_NODE_CURVE_PARAMETER 1088
#define GEO_NODE_CURVE_FILLET 1089
#define GEO_NODE_DISTRIBUTE_POINTS_ON_FACES 1090
/** \} */

View File

@ -5762,6 +5762,7 @@ static void registerGeometryNodes()
register_node_type_geo_curve_to_points();
register_node_type_geo_curve_trim();
register_node_type_geo_delete_geometry();
register_node_type_geo_distribute_points_on_faces();
register_node_type_geo_edge_split();
register_node_type_geo_input_index();
register_node_type_geo_input_material();

View File

@ -1980,6 +1980,11 @@ typedef enum GeometryNodePointDistributeMode {
GEO_NODE_POINT_DISTRIBUTE_POISSON = 1,
} GeometryNodePointDistributeMode;
typedef enum GeometryNodeDistributePointsOnFacesMode {
GEO_NODE_POINT_DISTRIBUTE_POINTS_ON_FACES_RANDOM = 0,
GEO_NODE_POINT_DISTRIBUTE_POINTS_ON_FACES_POISSON = 1,
} GeometryNodeDistributePointsOnFacesMode;
typedef enum GeometryNodeRotatePointsType {
GEO_NODE_POINT_ROTATE_TYPE_EULER = 0,
GEO_NODE_POINT_ROTATE_TYPE_AXIS_ANGLE = 1,

View File

@ -9479,6 +9479,33 @@ static void def_geo_point_distribute(StructRNA *srna)
RNA_def_property_update(prop, NC_NODE | NA_EDITED, "rna_Node_socket_update");
}
static void def_geo_distribute_points_on_faces(StructRNA *srna)
{
PropertyRNA *prop;
static const EnumPropertyItem rna_node_geometry_distribute_points_on_faces_mode_items[] = {
{GEO_NODE_POINT_DISTRIBUTE_POINTS_ON_FACES_RANDOM,
"RANDOM",
0,
"Random",
"Distribute points randomly on the surface"},
{GEO_NODE_POINT_DISTRIBUTE_POINTS_ON_FACES_POISSON,
"POISSON",
0,
"Poisson Disk",
"Distribute the points randomly on the surface while taking a minimum distance between "
"points into account"},
{0, NULL, 0, NULL, NULL},
};
prop = RNA_def_property(srna, "distribute_method", PROP_ENUM, PROP_NONE);
RNA_def_property_enum_sdna(prop, NULL, "custom1");
RNA_def_property_enum_items(prop, rna_node_geometry_distribute_points_on_faces_mode_items);
RNA_def_property_enum_default(prop, GEO_NODE_POINT_DISTRIBUTE_POINTS_ON_FACES_RANDOM);
RNA_def_property_ui_text(prop, "Distribution Method", "Method to use for scattering points");
RNA_def_property_update(prop, NC_NODE | NA_EDITED, "rna_Node_socket_update");
}
static void def_geo_attribute_color_ramp(StructRNA *srna)
{
PropertyRNA *prop;

View File

@ -146,6 +146,7 @@ set(SRC
geometry/nodes/legacy/node_geo_material_assign.cc
geometry/nodes/legacy/node_geo_select_by_material.cc
geometry/nodes/legacy/node_geo_point_distribute.cc
geometry/nodes/node_geo_align_rotation_to_vector.cc
geometry/nodes/node_geo_attribute_capture.cc
@ -196,6 +197,7 @@ set(SRC
geometry/nodes/node_geo_curve_to_points.cc
geometry/nodes/node_geo_curve_trim.cc
geometry/nodes/node_geo_delete_geometry.cc
geometry/nodes/node_geo_distribute_points_on_faces.cc
geometry/nodes/node_geo_edge_split.cc
geometry/nodes/node_geo_input_material.cc
geometry/nodes/node_geo_input_normal.cc
@ -218,7 +220,6 @@ set(SRC
geometry/nodes/node_geo_mesh_subdivide.cc
geometry/nodes/node_geo_mesh_to_curve.cc
geometry/nodes/node_geo_object_info.cc
geometry/nodes/node_geo_point_distribute.cc
geometry/nodes/node_geo_point_instance.cc
geometry/nodes/node_geo_point_rotate.cc
geometry/nodes/node_geo_point_scale.cc

View File

@ -78,6 +78,7 @@ void register_node_type_geo_curve_to_mesh(void);
void register_node_type_geo_curve_to_points(void);
void register_node_type_geo_curve_trim(void);
void register_node_type_geo_delete_geometry(void);
void register_node_type_geo_distribute_points_on_faces(void);
void register_node_type_geo_edge_split(void);
void register_node_type_geo_input_index(void);
void register_node_type_geo_input_material(void);

View File

@ -332,6 +332,7 @@ DefNode(GeometryNode, GEO_NODE_CURVE_FILLET, def_geo_curve_fillet, "CURVE_FILLET
DefNode(GeometryNode, GEO_NODE_CURVE_TO_MESH, 0, "CURVE_TO_MESH", CurveToMesh, "Curve to Mesh", "")
DefNode(GeometryNode, GEO_NODE_CURVE_TO_POINTS, def_geo_curve_to_points, "CURVE_TO_POINTS", CurveToPoints, "Curve to Points", "")
DefNode(GeometryNode, GEO_NODE_CURVE_TRIM, def_geo_curve_trim, "CURVE_TRIM", CurveTrim, "Curve Trim", "")
DefNode(GeometryNode, GEO_NODE_DISTRIBUTE_POINTS_ON_FACES, def_geo_distribute_points_on_faces, "DISTRIBUTE_POINTS_ON_FACES", DistributePointsOnFaces, "Distribute Points on Faces", "")
DefNode(GeometryNode, GEO_NODE_EDGE_SPLIT, 0, "EDGE_SPLIT", EdgeSplit, "Edge Split", "")
DefNode(GeometryNode, GEO_NODE_INPUT_INDEX, 0, "INDEX", InputIndex, "Index", "")
DefNode(GeometryNode, GEO_NODE_INPUT_MATERIAL, def_geo_input_material, "INPUT_MATERIAL", InputMaterial, "Material", "")

View File

@ -0,0 +1,753 @@
/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "BLI_kdtree.h"
#include "BLI_noise.hh"
#include "BLI_rand.hh"
#include "BLI_timeit.hh"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_pointcloud_types.h"
#include "BKE_attribute_math.hh"
#include "BKE_bvhutils.h"
#include "BKE_geometry_set_instances.hh"
#include "BKE_mesh.h"
#include "BKE_mesh_runtime.h"
#include "BKE_mesh_sample.hh"
#include "BKE_pointcloud.h"
#include "UI_interface.h"
#include "UI_resources.h"
#include "node_geometry_util.hh"
using blender::bke::GeometryInstanceGroup;
namespace blender::nodes {
static void geo_node_point_distribute_points_on_faces_declare(NodeDeclarationBuilder &b)
{
b.add_input<decl::Geometry>("Geometry");
b.add_input<decl::Float>("Distance Min").min(0.0f).subtype(PROP_DISTANCE);
b.add_input<decl::Float>("Density Max").default_value(10.0f).min(0.0f);
b.add_input<decl::Float>("Density").default_value(10.0f).supports_field();
b.add_input<decl::Float>("Density Factor")
.default_value(1.0f)
.min(0.0f)
.max(1.0f)
.supports_field();
b.add_input<decl::Int>("Seed");
b.add_input<decl::Bool>("Selection").default_value(true).hide_value().supports_field();
b.add_output<decl::Geometry>("Points");
b.add_output<decl::Vector>("Normal").field_source();
b.add_output<decl::Vector>("Rotation").subtype(PROP_EULER).field_source();
b.add_output<decl::Int>("Stable ID").field_source();
}
static void geo_node_point_distribute_points_on_faces_layout(uiLayout *layout,
bContext *UNUSED(C),
PointerRNA *ptr)
{
uiItemR(layout, ptr, "distribute_method", 0, "", ICON_NONE);
}
static void node_point_distribute_points_on_faces_update(bNodeTree *UNUSED(ntree), bNode *node)
{
bNodeSocket *sock_distance_min = (bNodeSocket *)BLI_findlink(&node->inputs, 1);
bNodeSocket *sock_density_max = (bNodeSocket *)sock_distance_min->next;
bNodeSocket *sock_density = sock_density_max->next;
bNodeSocket *sock_density_factor = sock_density->next;
nodeSetSocketAvailability(sock_distance_min,
node->custom1 == GEO_NODE_POINT_DISTRIBUTE_POINTS_ON_FACES_POISSON);
nodeSetSocketAvailability(sock_density_max,
node->custom1 == GEO_NODE_POINT_DISTRIBUTE_POINTS_ON_FACES_POISSON);
nodeSetSocketAvailability(sock_density,
node->custom1 == GEO_NODE_POINT_DISTRIBUTE_POINTS_ON_FACES_RANDOM);
nodeSetSocketAvailability(sock_density_factor,
node->custom1 == GEO_NODE_POINT_DISTRIBUTE_POINTS_ON_FACES_POISSON);
}
/**
* Use an arbitrary choice of axes for a usable rotation attribute directly out of this node.
*/
static float3 normal_to_euler_rotation(const float3 normal)
{
float quat[4];
vec_to_quat(quat, normal, OB_NEGZ, OB_POSY);
float3 rotation;
quat_to_eul(rotation, quat);
return rotation;
}
static void sample_mesh_surface(const Mesh &mesh,
const float4x4 &transform,
const float base_density,
const Span<float> density_factors,
const int seed,
Vector<float3> &r_positions,
Vector<float3> &r_bary_coords,
Vector<int> &r_looptri_indices)
{
const Span<MLoopTri> looptris{BKE_mesh_runtime_looptri_ensure(&mesh),
BKE_mesh_runtime_looptri_len(&mesh)};
for (const int looptri_index : looptris.index_range()) {
const MLoopTri &looptri = looptris[looptri_index];
const int v0_loop = looptri.tri[0];
const int v1_loop = looptri.tri[1];
const int v2_loop = looptri.tri[2];
const int v0_index = mesh.mloop[v0_loop].v;
const int v1_index = mesh.mloop[v1_loop].v;
const int v2_index = mesh.mloop[v2_loop].v;
const float3 v0_pos = transform * float3(mesh.mvert[v0_index].co);
const float3 v1_pos = transform * float3(mesh.mvert[v1_index].co);
const float3 v2_pos = transform * float3(mesh.mvert[v2_index].co);
float looptri_density_factor = 1.0f;
if (!density_factors.is_empty()) {
const float v0_density_factor = std::max(0.0f, density_factors[v0_loop]);
const float v1_density_factor = std::max(0.0f, density_factors[v1_loop]);
const float v2_density_factor = std::max(0.0f, density_factors[v2_loop]);
looptri_density_factor = (v0_density_factor + v1_density_factor + v2_density_factor) / 3.0f;
}
const float area = area_tri_v3(v0_pos, v1_pos, v2_pos);
const int looptri_seed = noise::hash(looptri_index, seed);
RandomNumberGenerator looptri_rng(looptri_seed);
const float points_amount_fl = area * base_density * looptri_density_factor;
const float add_point_probability = fractf(points_amount_fl);
const bool add_point = add_point_probability > looptri_rng.get_float();
const int point_amount = (int)points_amount_fl + (int)add_point;
for (int i = 0; i < point_amount; i++) {
const float3 bary_coord = looptri_rng.get_barycentric_coordinates();
float3 point_pos;
interp_v3_v3v3v3(point_pos, v0_pos, v1_pos, v2_pos, bary_coord);
r_positions.append(point_pos);
r_bary_coords.append(bary_coord);
r_looptri_indices.append(looptri_index);
}
}
}
BLI_NOINLINE static KDTree_3d *build_kdtree(Span<Vector<float3>> positions_all,
const int initial_points_len)
{
KDTree_3d *kdtree = BLI_kdtree_3d_new(initial_points_len);
int i_point = 0;
for (const Vector<float3> &positions : positions_all) {
for (const float3 position : positions) {
BLI_kdtree_3d_insert(kdtree, i_point, position);
i_point++;
}
}
BLI_kdtree_3d_balance(kdtree);
return kdtree;
}
BLI_NOINLINE static void update_elimination_mask_for_close_points(
Span<Vector<float3>> positions_all,
Span<int> instance_start_offsets,
const float minimum_distance,
MutableSpan<bool> elimination_mask,
const int initial_points_len)
{
if (minimum_distance <= 0.0f) {
return;
}
KDTree_3d *kdtree = build_kdtree(positions_all, initial_points_len);
/* The elimination mask is a flattened array for every point,
* so keep track of the index to it separately. */
for (const int i_instance : positions_all.index_range()) {
Span<float3> positions = positions_all[i_instance];
const int offset = instance_start_offsets[i_instance];
for (const int i : positions.index_range()) {
if (elimination_mask[offset + i]) {
continue;
}
struct CallbackData {
int index;
MutableSpan<bool> elimination_mask;
} callback_data = {offset + i, elimination_mask};
BLI_kdtree_3d_range_search_cb(
kdtree,
positions[i],
minimum_distance,
[](void *user_data, int index, const float *UNUSED(co), float UNUSED(dist_sq)) {
CallbackData &callback_data = *static_cast<CallbackData *>(user_data);
if (index != callback_data.index) {
callback_data.elimination_mask[index] = true;
}
return true;
},
&callback_data);
}
}
BLI_kdtree_3d_free(kdtree);
}
BLI_NOINLINE static void update_elimination_mask_based_on_density_factors(
const Mesh &mesh,
const Span<float> density_factors,
const Span<float3> bary_coords,
const Span<int> looptri_indices,
const MutableSpan<bool> elimination_mask)
{
const Span<MLoopTri> looptris{BKE_mesh_runtime_looptri_ensure(&mesh),
BKE_mesh_runtime_looptri_len(&mesh)};
for (const int i : bary_coords.index_range()) {
if (elimination_mask[i]) {
continue;
}
const MLoopTri &looptri = looptris[looptri_indices[i]];
const float3 bary_coord = bary_coords[i];
const int v0_loop = looptri.tri[0];
const int v1_loop = looptri.tri[1];
const int v2_loop = looptri.tri[2];
const float v0_density_factor = std::max(0.0f, density_factors[v0_loop]);
const float v1_density_factor = std::max(0.0f, density_factors[v1_loop]);
const float v2_density_factor = std::max(0.0f, density_factors[v2_loop]);
const float probablity = v0_density_factor * bary_coord.x + v1_density_factor * bary_coord.y +
v2_density_factor * bary_coord.z;
const float hash = noise::hash_float_to_float(bary_coord);
if (hash > probablity) {
elimination_mask[i] = true;
}
}
}
BLI_NOINLINE static void eliminate_points_based_on_mask(const Span<bool> elimination_mask,
Vector<float3> &positions,
Vector<float3> &bary_coords,
Vector<int> &looptri_indices)
{
for (int i = positions.size() - 1; i >= 0; i--) {
if (elimination_mask[i]) {
positions.remove_and_reorder(i);
bary_coords.remove_and_reorder(i);
looptri_indices.remove_and_reorder(i);
}
}
}
BLI_NOINLINE static void interpolate_attribute(const Mesh &mesh,
const Span<float3> bary_coords,
const Span<int> looptri_indices,
const AttributeDomain source_domain,
const GVArray &source_data,
GMutableSpan output_data)
{
switch (source_domain) {
case ATTR_DOMAIN_POINT: {
bke::mesh_surface_sample::sample_point_attribute(
mesh, looptri_indices, bary_coords, source_data, output_data);
break;
}
case ATTR_DOMAIN_CORNER: {
bke::mesh_surface_sample::sample_corner_attribute(
mesh, looptri_indices, bary_coords, source_data, output_data);
break;
}
case ATTR_DOMAIN_FACE: {
bke::mesh_surface_sample::sample_face_attribute(
mesh, looptri_indices, source_data, output_data);
break;
}
default: {
/* Not supported currently. */
return;
}
}
}
BLI_NOINLINE static void propagate_existing_attributes(
const Span<GeometryInstanceGroup> set_groups,
const Span<int> instance_start_offsets,
const Map<AttributeIDRef, AttributeKind> &attributes,
GeometryComponent &component,
const Span<Vector<float3>> bary_coords_array,
const Span<Vector<int>> looptri_indices_array)
{
for (Map<AttributeIDRef, AttributeKind>::Item entry : attributes.items()) {
const AttributeIDRef attribute_id = entry.key;
const CustomDataType output_data_type = entry.value.data_type;
/* The output domain is always #ATTR_DOMAIN_POINT, since we are creating a point cloud. */
OutputAttribute attribute_out = component.attribute_try_get_for_output_only(
attribute_id, ATTR_DOMAIN_POINT, output_data_type);
if (!attribute_out) {
continue;
}
GMutableSpan out_span = attribute_out.as_span();
int i_instance = 0;
for (const GeometryInstanceGroup &set_group : set_groups) {
const GeometrySet &set = set_group.geometry_set;
const MeshComponent &source_component = *set.get_component_for_read<MeshComponent>();
const Mesh &mesh = *source_component.get_for_read();
std::optional<AttributeMetaData> attribute_info = component.attribute_get_meta_data(
attribute_id);
if (!attribute_info) {
i_instance += set_group.transforms.size();
continue;
}
const AttributeDomain source_domain = attribute_info->domain;
GVArrayPtr source_attribute = source_component.attribute_get_for_read(
attribute_id, source_domain, output_data_type, nullptr);
if (!source_attribute) {
i_instance += set_group.transforms.size();
continue;
}
for (const int UNUSED(i_set_instance) : set_group.transforms.index_range()) {
const int offset = instance_start_offsets[i_instance];
Span<float3> bary_coords = bary_coords_array[i_instance];
Span<int> looptri_indices = looptri_indices_array[i_instance];
GMutableSpan instance_span = out_span.slice(offset, bary_coords.size());
interpolate_attribute(
mesh, bary_coords, looptri_indices, source_domain, *source_attribute, instance_span);
i_instance++;
}
attribute_math::convert_to_static_type(output_data_type, [&](auto dummy) {
using T = decltype(dummy);
GVArray_Span<T> source_span{*source_attribute};
});
}
attribute_out.save();
}
}
namespace {
struct AttributeOutputs {
StrongAnonymousAttributeID normal_id;
StrongAnonymousAttributeID rotation_id;
StrongAnonymousAttributeID stable_id_id;
};
} // namespace
BLI_NOINLINE static void compute_attribute_outputs(const Span<GeometryInstanceGroup> sets,
const Span<int> instance_start_offsets,
GeometryComponent &component,
const Span<Vector<float3>> bary_coords_array,
const Span<Vector<int>> looptri_indices_array,
const AttributeOutputs &attribute_outputs)
{
std::optional<OutputAttribute_Typed<int>> id_attribute;
std::optional<OutputAttribute_Typed<float3>> normal_attribute;
std::optional<OutputAttribute_Typed<float3>> rotation_attribute;
MutableSpan<int> result_ids;
MutableSpan<float3> result_normals;
MutableSpan<float3> result_rotations;
if (attribute_outputs.stable_id_id) {
id_attribute.emplace(component.attribute_try_get_for_output_only<int>(
attribute_outputs.stable_id_id.get(), ATTR_DOMAIN_POINT));
result_ids = id_attribute->as_span();
}
if (attribute_outputs.normal_id) {
normal_attribute.emplace(component.attribute_try_get_for_output_only<float3>(
attribute_outputs.normal_id.get(), ATTR_DOMAIN_POINT));
result_normals = normal_attribute->as_span();
}
if (attribute_outputs.rotation_id) {
rotation_attribute.emplace(component.attribute_try_get_for_output_only<float3>(
attribute_outputs.rotation_id.get(), ATTR_DOMAIN_POINT));
result_rotations = rotation_attribute->as_span();
}
int i_instance = 0;
for (const GeometryInstanceGroup &set_group : sets) {
const GeometrySet &set = set_group.geometry_set;
const MeshComponent &component = *set.get_component_for_read<MeshComponent>();
const Mesh &mesh = *component.get_for_read();
const Span<MLoopTri> looptris{BKE_mesh_runtime_looptri_ensure(&mesh),
BKE_mesh_runtime_looptri_len(&mesh)};
for (const float4x4 &transform : set_group.transforms) {
const int offset = instance_start_offsets[i_instance];
Span<float3> bary_coords = bary_coords_array[i_instance];
Span<int> looptri_indices = looptri_indices_array[i_instance];
MutableSpan<int> ids = result_ids.slice(offset, bary_coords.size());
MutableSpan<float3> normals = result_normals.slice(offset, bary_coords.size());
MutableSpan<float3> rotations = result_rotations.slice(offset, bary_coords.size());
/* Use one matrix multiplication per point instead of three (for each triangle corner). */
float rotation_matrix[3][3];
mat4_to_rot(rotation_matrix, transform.values);
for (const int i : bary_coords.index_range()) {
const int looptri_index = looptri_indices[i];
const MLoopTri &looptri = looptris[looptri_index];
const float3 &bary_coord = bary_coords[i];
const int v0_index = mesh.mloop[looptri.tri[0]].v;
const int v1_index = mesh.mloop[looptri.tri[1]].v;
const int v2_index = mesh.mloop[looptri.tri[2]].v;
const float3 v0_pos = float3(mesh.mvert[v0_index].co);
const float3 v1_pos = float3(mesh.mvert[v1_index].co);
const float3 v2_pos = float3(mesh.mvert[v2_index].co);
if (!result_ids.is_empty()) {
ids[i] = noise::hash(noise::hash_float(bary_coord), looptri_index);
}
float3 normal;
if (!result_normals.is_empty() || !result_rotations.is_empty()) {
normal_tri_v3(normal, v0_pos, v1_pos, v2_pos);
mul_m3_v3(rotation_matrix, normal);
}
if (!result_normals.is_empty()) {
normals[i] = normal;
}
if (!result_rotations.is_empty()) {
rotations[i] = normal_to_euler_rotation(normal);
}
}
i_instance++;
}
}
if (id_attribute) {
id_attribute->save();
}
if (normal_attribute) {
normal_attribute->save();
}
if (rotation_attribute) {
rotation_attribute->save();
}
}
static Array<float> calc_full_density_factors_with_selection(const MeshComponent &component,
const Field<float> &density_field,
const Field<bool> &selection_field)
{
const AttributeDomain attribute_domain = ATTR_DOMAIN_CORNER;
GeometryComponentFieldContext field_context{component, attribute_domain};
const int domain_size = component.attribute_domain_size(attribute_domain);
fn::FieldEvaluator selection_evaluator{field_context, domain_size};
selection_evaluator.add(selection_field);
selection_evaluator.evaluate();
const IndexMask selection_mask = selection_evaluator.get_evaluated_as_mask(0);
Array<float> densities(domain_size, 0.0f);
fn::FieldEvaluator density_evaluator{field_context, &selection_mask};
density_evaluator.add_with_destination(density_field, densities.as_mutable_span());
density_evaluator.evaluate();
return densities;
}
static void distribute_points_random(Span<GeometryInstanceGroup> set_groups,
const Field<float> &density_field,
const Field<bool> &selection_field,
const int seed,
MutableSpan<Vector<float3>> positions_all,
MutableSpan<Vector<float3>> bary_coords_all,
MutableSpan<Vector<int>> looptri_indices_all)
{
int i_instance = 0;
for (const GeometryInstanceGroup &set_group : set_groups) {
const GeometrySet &set = set_group.geometry_set;
const MeshComponent &component = *set.get_component_for_read<MeshComponent>();
const Array<float> densities = calc_full_density_factors_with_selection(
component, density_field, selection_field);
const Mesh &mesh = *component.get_for_read();
for (const float4x4 &transform : set_group.transforms) {
Vector<float3> &positions = positions_all[i_instance];
Vector<float3> &bary_coords = bary_coords_all[i_instance];
Vector<int> &looptri_indices = looptri_indices_all[i_instance];
const int instance_seed = noise::hash(seed, i_instance);
sample_mesh_surface(mesh,
transform,
1.0f,
densities,
instance_seed,
positions,
bary_coords,
looptri_indices);
i_instance++;
}
}
}
static void distribute_points_poisson_disk(Span<GeometryInstanceGroup> set_groups,
const float minimum_distance,
const float max_density,
const Field<float> &density_factor_field,
const Field<bool> &selection_field,
const int seed,
MutableSpan<Vector<float3>> positions_all,
MutableSpan<Vector<float3>> bary_coords_all,
MutableSpan<Vector<int>> looptri_indices_all)
{
Array<int> instance_start_offsets(positions_all.size());
int initial_points_len = 0;
int i_instance = 0;
for (const GeometryInstanceGroup &set_group : set_groups) {
const GeometrySet &set = set_group.geometry_set;
const MeshComponent &component = *set.get_component_for_read<MeshComponent>();
const Mesh &mesh = *component.get_for_read();
for (const float4x4 &transform : set_group.transforms) {
Vector<float3> &positions = positions_all[i_instance];
Vector<float3> &bary_coords = bary_coords_all[i_instance];
Vector<int> &looptri_indices = looptri_indices_all[i_instance];
const int instance_seed = noise::hash(seed, i_instance);
sample_mesh_surface(mesh,
transform,
max_density,
{},
instance_seed,
positions,
bary_coords,
looptri_indices);
instance_start_offsets[i_instance] = initial_points_len;
initial_points_len += positions.size();
i_instance++;
}
}
/* Unlike the other result arrays, the elimination mask in stored as a flat array for every
* point, in order to simplify culling points from the KDTree (which needs to know about all
* points at once). */
Array<bool> elimination_mask(initial_points_len, false);
update_elimination_mask_for_close_points(positions_all,
instance_start_offsets,
minimum_distance,
elimination_mask,
initial_points_len);
i_instance = 0;
for (const GeometryInstanceGroup &set_group : set_groups) {
const GeometrySet &set = set_group.geometry_set;
const MeshComponent &component = *set.get_component_for_read<MeshComponent>();
const Mesh &mesh = *component.get_for_read();
const Array<float> density_factors = calc_full_density_factors_with_selection(
component, density_factor_field, selection_field);
for (const int UNUSED(i_set_instance) : set_group.transforms.index_range()) {
Vector<float3> &positions = positions_all[i_instance];
Vector<float3> &bary_coords = bary_coords_all[i_instance];
Vector<int> &looptri_indices = looptri_indices_all[i_instance];
const int offset = instance_start_offsets[i_instance];
update_elimination_mask_based_on_density_factors(
mesh,
density_factors,
bary_coords,
looptri_indices,
elimination_mask.as_mutable_span().slice(offset, positions.size()));
eliminate_points_based_on_mask(elimination_mask.as_span().slice(offset, positions.size()),
positions,
bary_coords,
looptri_indices);
i_instance++;
}
}
}
static void geo_node_point_distribute_points_on_faces_exec(GeoNodeExecParams params)
{
GeometrySet geometry_set = params.extract_input<GeometrySet>("Geometry");
const GeometryNodeDistributePointsOnFacesMode distribute_method =
static_cast<GeometryNodeDistributePointsOnFacesMode>(params.node().custom1);
const int seed = params.get_input<int>("Seed") * 5383843;
const Field<bool> selection_field = params.extract_input<Field<bool>>("Selection");
Vector<GeometryInstanceGroup> set_groups;
geometry_set_gather_instances(geometry_set, set_groups);
if (set_groups.is_empty()) {
params.set_output("Points", GeometrySet());
return;
}
/* Remove any set inputs that don't contain a mesh, to avoid checking later on. */
for (int i = set_groups.size() - 1; i >= 0; i--) {
const GeometrySet &set = set_groups[i].geometry_set;
if (!set.has_mesh()) {
set_groups.remove_and_reorder(i);
}
}
if (set_groups.is_empty()) {
params.error_message_add(NodeWarningType::Error, TIP_("Input geometry must contain a mesh"));
params.set_output("Points", GeometrySet());
return;
}
int instances_len = 0;
for (GeometryInstanceGroup &set_group : set_groups) {
instances_len += set_group.transforms.size();
}
/* Store data per-instance in order to simplify attribute access after the scattering,
* and to make the point elimination simpler for the poisson disk mode. Note that some
* vectors will be empty if any instances don't contain mesh data. */
Array<Vector<float3>> positions_all(instances_len);
Array<Vector<float3>> bary_coords_all(instances_len);
Array<Vector<int>> looptri_indices_all(instances_len);
switch (distribute_method) {
case GEO_NODE_POINT_DISTRIBUTE_POINTS_ON_FACES_RANDOM: {
const Field<float> density_field = params.extract_input<Field<float>>("Density");
distribute_points_random(set_groups,
density_field,
selection_field,
seed,
positions_all,
bary_coords_all,
looptri_indices_all);
break;
}
case GEO_NODE_POINT_DISTRIBUTE_POINTS_ON_FACES_POISSON: {
const float minimum_distance = params.extract_input<float>("Distance Min");
const float density_max = params.extract_input<float>("Density Max");
const Field<float> density_factors_field = params.extract_input<Field<float>>(
"Density Factor");
distribute_points_poisson_disk(set_groups,
minimum_distance,
density_max,
density_factors_field,
selection_field,
seed,
positions_all,
bary_coords_all,
looptri_indices_all);
break;
}
}
int final_points_len = 0;
Array<int> instance_start_offsets(set_groups.size());
for (const int i : positions_all.index_range()) {
Vector<float3> &positions = positions_all[i];
instance_start_offsets[i] = final_points_len;
final_points_len += positions.size();
}
PointCloud *pointcloud = BKE_pointcloud_new_nomain(final_points_len);
for (const int instance_index : positions_all.index_range()) {
const int offset = instance_start_offsets[instance_index];
Span<float3> positions = positions_all[instance_index];
memcpy(pointcloud->co + offset, positions.data(), sizeof(float3) * positions.size());
}
uninitialized_fill_n(pointcloud->radius, pointcloud->totpoint, 0.05f);
GeometrySet geometry_set_out = GeometrySet::create_with_pointcloud(pointcloud);
PointCloudComponent &point_component =
geometry_set_out.get_component_for_write<PointCloudComponent>();
Map<AttributeIDRef, AttributeKind> attributes;
geometry_set.gather_attributes_for_propagation(
{GEO_COMPONENT_TYPE_MESH}, GEO_COMPONENT_TYPE_POINT_CLOUD, true, attributes);
/* Position is set separately. */
attributes.remove("position");
propagate_existing_attributes(set_groups,
instance_start_offsets,
attributes,
point_component,
bary_coords_all,
looptri_indices_all);
AttributeOutputs attribute_outputs;
if (params.output_is_required("Normal")) {
attribute_outputs.normal_id = StrongAnonymousAttributeID("normal");
}
if (params.output_is_required("Rotation")) {
attribute_outputs.rotation_id = StrongAnonymousAttributeID("rotation");
}
if (params.output_is_required("Stable ID")) {
attribute_outputs.stable_id_id = StrongAnonymousAttributeID("stable id");
}
compute_attribute_outputs(set_groups,
instance_start_offsets,
point_component,
bary_coords_all,
looptri_indices_all,
attribute_outputs);
params.set_output("Points", std::move(geometry_set_out));
if (attribute_outputs.normal_id) {
params.set_output(
"Normal",
AnonymousAttributeFieldInput::Create<float3>(std::move(attribute_outputs.normal_id)));
}
if (attribute_outputs.rotation_id) {
params.set_output(
"Rotation",
AnonymousAttributeFieldInput::Create<float3>(std::move(attribute_outputs.rotation_id)));
}
if (attribute_outputs.stable_id_id) {
params.set_output(
"Stable ID",
AnonymousAttributeFieldInput::Create<int>(std::move(attribute_outputs.stable_id_id)));
}
}
} // namespace blender::nodes
void register_node_type_geo_distribute_points_on_faces()
{
static bNodeType ntype;
geo_node_type_base(&ntype,
GEO_NODE_DISTRIBUTE_POINTS_ON_FACES,
"Distribute Points on Faces",
NODE_CLASS_GEOMETRY,
0);
node_type_update(&ntype, blender::nodes::node_point_distribute_points_on_faces_update);
node_type_size(&ntype, 170, 100, 320);
ntype.declare = blender::nodes::geo_node_point_distribute_points_on_faces_declare;
ntype.geometry_node_execute = blender::nodes::geo_node_point_distribute_points_on_faces_exec;
ntype.draw_buttons = blender::nodes::geo_node_point_distribute_points_on_faces_layout;
nodeRegisterType(&ntype);
}