BMesh: add utility to calculate normal from a vertex cloud

Extract from BM_verts_sort_radial_plane & simplify.
This commit is contained in:
Campbell Barton 2019-08-09 05:27:49 +10:00
parent 1eead85cdc
commit 634621d54d
3 changed files with 119 additions and 73 deletions

View File

@ -390,79 +390,13 @@ void BM_verts_sort_radial_plane(BMVert **vert_arr, int len)
struct SortIntByFloat *vang = BLI_array_alloca(vang, len);
BMVert **vert_arr_map = BLI_array_alloca(vert_arr_map, len);
float totv_inv = 1.0f / (float)len;
int i = 0;
float nor[3], cent[3];
int index_tangent = 0;
BM_verts_calc_normal_from_cloud_ex(vert_arr, len, nor, cent, &index_tangent);
const float *far = vert_arr[index_tangent]->co;
float cent[3], nor[3];
const float *far = NULL, *far_cross = NULL;
float far_vec[3];
float far_cross_vec[3];
float sign_vec[3]; /* work out if we are pos/neg angle */
float far_dist_sq, far_dist_max_sq;
float far_cross_dist, far_cross_best = 0.0f;
/* get the center point and collect vector array since we loop over these a lot */
zero_v3(cent);
for (i = 0; i < len; i++) {
madd_v3_v3fl(cent, vert_arr[i]->co, totv_inv);
}
/* find the far point from cent */
far_dist_max_sq = 0.0f;
for (i = 0; i < len; i++) {
far_dist_sq = len_squared_v3v3(vert_arr[i]->co, cent);
if (far_dist_sq > far_dist_max_sq || far == NULL) {
far = vert_arr[i]->co;
far_dist_max_sq = far_dist_sq;
}
}
sub_v3_v3v3(far_vec, far, cent);
// far_dist = len_v3(far_vec); /* real dist */ /* UNUSED */
/* --- */
/* find a point 90deg about to compare with */
far_cross_best = 0.0f;
for (i = 0; i < len; i++) {
if (far == vert_arr[i]->co) {
continue;
}
sub_v3_v3v3(far_cross_vec, vert_arr[i]->co, cent);
far_cross_dist = normalize_v3(far_cross_vec);
/* more of a weight then a distance */
far_cross_dist = (
/* First we want to have a value close to zero mapped to 1. */
1.0f - fabsf(dot_v3v3(far_vec, far_cross_vec)) *
/* Second we multiply by the distance
* so points close to the center are not preferred. */
far_cross_dist);
if (far_cross_dist > far_cross_best || far_cross == NULL) {
far_cross = vert_arr[i]->co;
far_cross_best = far_cross_dist;
}
}
sub_v3_v3v3(far_cross_vec, far_cross, cent);
/* --- */
/* now we have 2 vectors we can have a cross product */
cross_v3_v3v3(nor, far_vec, far_cross_vec);
normalize_v3(nor);
cross_v3_v3v3(sign_vec, far_vec, nor); /* this vector should match 'far_cross_vec' closely */
/* --- */
/* now calculate every points angle around the normal (signed) */
for (i = 0; i < len; i++) {
/* Now calculate every points angle around the normal (signed). */
for (int i = 0; i < len; i++) {
vang[i].sort_value = angle_signed_on_axis_v3v3v3_v3(far, cent, vert_arr[i]->co, nor);
vang[i].data = i;
vert_arr_map[i] = vert_arr[i];
@ -473,7 +407,7 @@ void BM_verts_sort_radial_plane(BMVert **vert_arr, int len)
/* --- */
for (i = 0; i < len; i++) {
for (int i = 0; i < len; i++) {
vert_arr[i] = vert_arr_map[vang[i].data];
}
}

View File

@ -864,6 +864,113 @@ float BM_face_calc_normal_vcos(const BMesh *bm,
}
}
/**
* Calculate a normal from a vertex cloud.
*
* \note We could make a higher quality version that takes all vertices into account.
* Currently it finds 4 outer most points returning it's normal.
*/
void BM_verts_calc_normal_from_cloud_ex(
BMVert **varr, int varr_len, float r_normal[3], float r_center[3], int *r_index_tangent)
{
const float varr_len_inv = 1.0f / (float)varr_len;
/* Get the center point and collect vector array since we loop over these a lot. */
float center[3] = {0.0f, 0.0f, 0.0f};
for (int i = 0; i < varr_len; i++) {
madd_v3_v3fl(center, varr[i]->co, varr_len_inv);
}
/* Find the 'co_a' point from center. */
int co_a_index = 0;
const float *co_a = NULL;
{
float dist_sq_max = -1.0f;
for (int i = 0; i < varr_len; i++) {
const float dist_sq_test = len_squared_v3v3(varr[i]->co, center);
if (!(dist_sq_test <= dist_sq_max)) {
co_a = varr[i]->co;
co_a_index = i;
dist_sq_max = dist_sq_test;
}
}
}
float dir_a[3];
sub_v3_v3v3(dir_a, co_a, center);
normalize_v3(dir_a);
const float *co_b = NULL;
float dir_b[3] = {0.0f, 0.0f, 0.0f};
{
float dist_sq_max = -1.0f;
for (int i = 0; i < varr_len; i++) {
if (varr[i]->co == co_a) {
continue;
}
float dir_test[3];
sub_v3_v3v3(dir_test, varr[i]->co, center);
project_plane_normalized_v3_v3v3(dir_test, dir_test, dir_a);
const float dist_sq_test = len_squared_v3(dir_test);
if (!(dist_sq_test <= dist_sq_max)) {
co_b = varr[i]->co;
dist_sq_max = dist_sq_test;
copy_v3_v3(dir_b, dir_test);
}
}
}
if (varr_len <= 3) {
normal_tri_v3(r_normal, center, co_a, co_b);
goto finally;
}
normalize_v3(dir_b);
const float *co_a_opposite = NULL;
const float *co_b_opposite = NULL;
{
float dot_a_min = FLT_MAX;
float dot_b_min = FLT_MAX;
for (int i = 0; i < varr_len; i++) {
const float *co_test = varr[i]->co;
float dot_test;
if (co_test != co_a) {
dot_test = dot_v3v3(dir_a, co_test);
if (dot_test < dot_a_min) {
dot_a_min = dot_test;
co_a_opposite = co_test;
}
}
if (co_test != co_b) {
dot_test = dot_v3v3(dir_b, co_test);
if (dot_test < dot_b_min) {
dot_b_min = dot_test;
co_b_opposite = co_test;
}
}
}
}
normal_quad_v3(r_normal, co_a, co_b, co_a_opposite, co_b_opposite);
finally:
if (r_center != NULL) {
copy_v3_v3(r_center, center);
}
if (r_index_tangent != NULL) {
*r_index_tangent = co_a_index;
}
}
void BM_verts_calc_normal_from_cloud(BMVert **varr, int varr_len, float r_normal[3])
{
BM_verts_calc_normal_from_cloud_ex(varr, varr_len, r_normal, NULL, NULL);
}
/**
* Calculates the face subset normal.
*/

View File

@ -38,6 +38,11 @@ float BM_face_calc_normal_vcos(const BMesh *bm,
const BMFace *f,
float r_no[3],
float const (*vertexCos)[3]) ATTR_NONNULL();
void BM_verts_calc_normal_from_cloud_ex(
BMVert **varr, int varr_len, float r_normal[3], float r_center[3], int *r_index_tangent);
void BM_verts_calc_normal_from_cloud(BMVert **varr, int varr_len, float r_normal[3]);
float BM_face_calc_normal_subset(const BMLoop *l_first, const BMLoop *l_last, float r_no[3])
ATTR_NONNULL();
float BM_face_calc_area(const BMFace *f) ATTR_WARN_UNUSED_RESULT ATTR_NONNULL();